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Abstract
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the market estimates. We also explain the bias by ambiguity aversion averaging

about 0.6 globally, closely matching current experimental estimates from US, Dutch,
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1 Introduction

The equity home bias puzzle refers to the observation that investors tend to over-invest in

domestic equities (Cooper and Kaplanis, 1994; French and Poterba, 1991; Tesar and

Werner, 1995) despite the benefits of international diversification under the ICAPM

(Adler and Dumas, 1983). Ambiguity aversion has been shown to induce home bias, but

a complete puzzle explanation is missing. We develop a portfolio selection model with

perceived ambiguity as a characteristic of investors’ beliefs and ambiguity aversion as a be-

havioral characteristic of their tastes (Baillon, Huang, Selim, and Wakker, 2018). Taken

to the data, the model explains the equity home bias globally through both channels.

A related puzzle is household under-diversification (Friend and Blume, 1975). A model

prediction that perceived ambiguity induces household under-diversification is verified on

a large dataset of US household portfolios (Barber and Odean, 2000), and a regression

with controls documents ambiguity as a determinant of this puzzle as well.

We model heterogenous ambiguities for the home and foreign markets using ellipsoidal

sets (Ben-Tal, El Ghaoui, and Nemirovski, 2009). The ellipsoids with correlated returns

ambiguity are salient. Depending on the correlations, the home allocation can be zero

even if home returns are less ambiguous than the foreign or positive even if more am-

biguous. The model is unbiased, with a non-mechanical relation between ambiguity and

diversification. Ceteris paribus, bias increases with ambiguity like in existing models, but

correlations in the ambiguity set nest alternative possibilities to let the data speak.

We introduce correlated returns heterogeneous ambiguity starting from the continuous

ambiguity aversion α-maxmin model of Ghirardato, Maccheroni, and Marinacci (2004).

We first obtain a worst-case model optimizing a non-parametric performance ratio with-

out a normality assumption. This model is parsimonious, without free parameters of risk

or ambiguity aversion. We show that it satisfies second-order stochastic dominance con-

sistency, abstracting from investor risk aversion parameters. It also satisfies the maxmin

axioms of Gilboa and Schmeidler (1989), abstracting from ambiguity aversion parame-

ters. We generalize the model to vary from worst-case ambiguity aversion to best-case

ambiguity-seeking, with ambiguity neutrality in between. The worst-case model can ex-

plain the puzzle through ambiguity beliefs, and the general model through tastes.

We put the models to the data of 21 developed and 19 emerging markets, estimating

ellipsoidal ambiguity sets from market data using different methods. The worst-case

model optimal allocations match the observed home bias for perceived ambiguity within

the market estimates for all countries. Interval ambiguity sets without correlations do not

match the observed bias. Using the general model, we infer the ambiguity aversion that

matches the observed bias under the market-estimated perceived ambiguity. We obtain

ambiguity aversion averaging 0.6 with little cross-country variability and statistically
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larger than the neutral 0.5. Our estimate is within the range of experimental estimates

(0.52-0.63) from Dutch (Dimmock, Kouwenberg, and Wakker, 2016b), US (Dimmock,

Kouwenberg, Mitchell, and Peijnenburg, 2016a), or Chinese (Potamites and Zhang, 2012)

population samples.

Cooper, Sercu, and Vanpée (2012) point out that the challenge in explaining the puzzle

is to generate allocations matching the observed bias with realistic parameter values. Our

models pass this test for forty countries with different ambiguity estimation methods.

Extensive literature has sought to explain the equity home bias puzzle (Cooper et al.,

2012). The survey by Coeurdacier and Rey (2013) identifies potential explanations

through (i) real exchange rate and non-tradable income risk, (ii) trading costs in interna-

tional markets, such as transaction costs, differences in tax treatments between national

and foreign assets or differences in legal frameworks, and (iii) informational frictions and

behavioral biases. Tesar and Werner (1995) anticipated that an explanation would re-

quire a rich portfolio analysis model, with Glassman and Riddick (2001) developing such

a model to identify adjustments that could explain the puzzle and finding that no single

set of adjustments suffices. One important strand of research looks at ambiguity (Knight,

1921) as a potential explanation, establishing a relation in theoretical models and find-

ing evidence in laboratory setups and survey data. However, a full explanation is still

missing; this is the direction we follow and fill the gap.

Theoretical works by Dow, Da, and Werlang (1992) and Epstein and Wang (1994)

show, respectively, that ambiguity aversion leads to price interval with zero holdings in

an ambiguous asset and establish the existence of an equilibrium process with possibly

indeterminate equilibria. The authors suggest that their findings may explain the puzzles.

Recent models build on these early works to show that ambiguity induces home bias or

under-diversification. However, either they did not put the models to the data, or when

they did the test, they reached only a partial explanation. Epstein and Miao (2003)

develop a two-asset model with heterogeneous ambiguities and show that ambiguity tilts

the portfolios towards home but does not resolve the puzzle in US data. Uppal and Wang

(2003) show that ambiguity induces under-diversification, but tests on three markets do

not match the observed allocations for reasonable ambiguity parameters.1 Baele, Pun-

gulescu, and Ter Horst (2007) introduce ambiguity in mean-variance asset allocation and

obtain portfolios halving, but not eliminating, the bias. Cao, Han, Hirshleifer, and Zhang

(2011) develop a two-asset model to explain observed allocations for reasonable “fear of

unfamiliarity,” and Boyle, Garlappi, Uppal, and Wang (2012) develop a model with in-

terval ambiguity avoidance that generates flight to familiarity in controlled experiments.

1We implemented their model with recent data (1999-2019) and also found that the generated port-
folios do not match the observed ones.
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The work closest to ours is Maccheroni, Marinacci, and Ruffino (2013), who developed

a mean-variance model with smooth ambiguity aversion and showed that ambiguity aver-

sion reduces the optimal exposure to ambiguity with the portfolio composition depending

on the ambiguous asset’s alpha with the risky asset as the benchmark. We add tastes,

beliefs, and correlations in the ambiguity sets, do away with the normality assumption,

and conduct extensive tests explaining the puzzle on a large sample of countries. In the

process, we also obtain estimates of ambiguity aversion for a large sample of countries that

closely match existing experimental evidence from US, Dutch, and Chinese population

samples.

To put the models to the data, we need the asset perceived ambiguities (Bianchi

and Tallon, 2019) and investor ambiguity aversion (Baillon et al., 2018). Dlugosch and

Wang (2022) put a model with perceived ambiguity to the data and show on a sample

of twenty-three countries that home ambiguity aversion correlates positively with foreign

bias, accounting for several controls, but does not match the observed allocations. Hara

and Honda (2022) allow short sales in a mean-variance smooth ambiguity aversion model

and obtain the optimality conditions involving the means, variances, and covariances of

asset returns, investor attitudes toward risk and ambiguity, and perceived ambiguity,

and show that ambiguity aversion explains the market capitalization and why the value-

weighted portfolio is not the tangency portfolio. This work suggests that a potential

explanation of the puzzle must consider the assets’ mean returns and higher moments,

including correlations, perceived ambiguity, and investor ambiguity and risk aversion.

This is what our models achieve.

Ambiguity-averse investors were shown to under-diversify in experimental settings by

Ahn, Choi, Gale, and Kariv (2014); Bossaerts, Ghirardato, Guarnaschelli, and Zame

(2010). A relation between ambiguity aversion and home bias and portfolio under-

diversification was documented in survey data by Bianchi and Tallon (2019); Dimmock

et al. (2016a), and Dimmock et al. (2016b) found that the relation holds when investors

perceive high asset ambiguity. Peijnenburg (2018) found that reducing ambiguity through

learning ameliorates under-diversification. Both beliefs and tastes matter in experiments.

We contribute to the literature a novel model with ambiguity tastes and beliefs and a

comprehensive empirical study explaining the equity home bias through both channels.

Methodologically, our model captures return correlations in the ambiguity sets, whereas

earlier works with interval sets do not.2 Following the literature on robust optimization

(Mulvey, Vanderbei, and Zenios, 1995) we use ellipsoidal ambiguity sets (Ben-Tal and

Nemirovski, 1998) to incorporate the returns’ covariance matrix. Like earlier works, we

2See, e.g., Bianchi and Tallon (2019); Boyle, Garlappi, Uppal, and Wang (2012); Chen and Epstein
(2002); Dlugosch and Wang (2022); Epstein and Miao (2003); Epstein and Wang (1994); Klibanoff,
Marinacci, and Mukerji (2005); Maccheroni, Marinacci, and Ruffino (2013); Uppal and Wang (2003).
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show that under-diversification increases with perceived ambiguity, but we nest alter-

native possibilities by interacting ambiguity with correlations. The model optimizes a

performance ratio for stable distributions (mean-to-Conditional Value-at-Risk, Farinelli,

Ferreira, Rossello, Thoeny, and Tibiletti (2008); Rachev, Stoyanov, and Fabozzi (2008)),

and we prove second-order stochastic dominance (SSD) consistency for the worst-case.

Our models are new to the literature.3

Empirically, our study on a large sample of developed and emerging markets with

ambiguity sets estimated from market data provides a complete explanation of the equity

home bias through beliefs and tastes. Perceived ambiguity, much below the market

estimates, leads to the observed bias under worst-case ambiguity aversion. Mild ambiguity

aversion under the market-estimated ambiguity also leads to the observed bias. These

explanations are complementary. A significant negative result is to show that models

without correlation in the ambiguity set do not explain the puzzle.

We also inform the literature on the determinants of household under-diversification.

Our worst-case model for a homogeneous ambiguity set predicts that less diversified

portfolios are less ambiguous. We verify this prediction on US household portfolios from

the database of Barber and Odean (2000) and document ambiguity as an economically

and statistically significant determinant. Earlier works identify a preference for skew-

ness (Mitton and Vorkink, 2007), local bias (Goetzmann and Kumar, 2008), behavioral

(Barber and Odean, 2008), and ambiguity aversion (Dimmock et al., 2016b), and we add

perceived ambiguity to this list.

2 Portfolio selection with ambiguity tastes and be-

liefs

We select portfolios with the highest attainable performance ratio R(r̃p), where r̃p is

the random variable of portfolio returns. R combines reward and risk in a single ratio,

and portfolios are selected based on security characteristics without specifying investor

preferences (Farinelli et al., 2008). For instance, Pedersen, Fitzgibbons, and Pomorski

(2021) maximize the Sharpe ratio for investors with a quadratic utility function to intro-

duce non-pecuniary (ESG) criteria. We choose an SSD consistent performance ratio (see

definitions in Appendix C.1) to account for the skewed returns of the international mar-

kets (Ghysels, Plazzi, and Valkanov, 2016). Maximizing an SSD criterion for investors

with concave, non-decreasing utility functions, we can introduce the additional criteria

of ambiguity tastes and beliefs.

The portfolio return is given by r̃p = r̃>w, where w ∈ X ⊂ Rn is the vector of asset

3See the recently published Bertsimas and Den Hertog (2022); Rahimian and Mehrotra (2022).
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weights and r̃ ∈ Rn is the vector of random asset returns with expected value r̄. Excess

returns are over the risk-free rate rf . X = {w ∈ Rn | w ≥ 0, e>w = 1} is the set of feasible

portfolios with no short sales, with e> a conformable vector of ones. To differentiate home

(h) and foreign (f) assets, we take w = (wh, wf ) as the concatenation of home and foreign

allocations wh ∈ R and wf ∈ Rn−1, with conformable random returns r̃h and r̃f .

We introduce ambiguity tastes and beliefs, with mean returns r̄ from an ambiguity set

U with probability distribution π ∈ D (beliefs) and investor ambiguity aversion denoted

by parameter λ (tastes). The model of Ghirardato et al. (2004) is written as

max
w∈X

λ

(
min
r̄∈U

min
π∈D
R(r̃p)

)
+ (1− λ)

(
max
r̄∈U

max
π∈D
R(r̃p)

)
. (1)

λ = 1 corresponds to the worst-case ambiguity aversion (Gilboa and Schmeidler, 1989),

λ = 0 corresponds to best-case ambiguity seeking, and λ = 0.5 to ambiguity neutrality.

For a performance ratio without the normality assumption, we use the conditional

value-at-risk (CVaR) tail risk measure as the negative of the expected value of excess

returns below a threshold; see Appendix Definition C.1. This measures losses.4 We

maximize the mean-to-CVaR (MtC) ratio of portfolio expected excess returns divided

by the CVaR of losses (Farinelli et al., 2008; Rachev et al., 2008). The unambiguous

portfolio selection model is given by

max
w∈X
R .

= MtC =
E(r̃p − rf )

CVaR(r̃p − rf )
. (2)

We define ambiguity and introduce (2) into the general model (1). We assume that the

joint probability distribution of returns belongs to the class of distributions with means

r̄ ∈ Rn and covariance matrix Σ from the space of positive definite matrices.

Definition 2.1 (Ambiguity in distribution). The distribution of r̃ is of the form

D = {π | E[r̃] = r̄, Cov[r̃] = Σ}.

We consider ambiguous means and known covariance since portfolio sensitivity to

mean estimation errors is an order of magnitude larger than to covariance errors (Britten-

Jones, 1999; Broadie, 1993; Kaut et al., 2007) and because we can improve the accuracy

of second moments estimates by increasing the observation frequency (Cao et al., 2011).5

4CVaR coincides with the coherent risk measure of Artzner, Delbaen, Eber, and Heath (1999) for
continuous distributions. The definition for general distributions, including the discrete distributions in
this paper, is due to Rockafellar and Uryasev (2002). Portfolio models with CVAR include Alexander,
Coleman, and Li (2006); Huang, Zhu, Fabozzi, and Fukushima (2008); Kaut, Wallace, Vladimirou, and
Zenios (2007); Mausser and Romanko (2018).

5Portfolio models with ambiguous covariance include El Ghaoui et al. (2003); Goldfarb and Iyengar
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The means are known only to the extent that they belong to an ellipsoidal ambiguity set.

Definition 2.2 (Ellipsoidal correlated returns ambiguity). Mean returns belong to the

ellipsoidal set

U = {r̄ ∈ Rn | (r̄ − r̂)>Σ̂−1(r̄ − r̂) ≤ δ2},

where r̂ is the center of the ellipsoid with size δ, and Σ̂ is the covariance matrix estimate.

Ellipsoidal ambiguity sets account for the correlation between assets, unlike the interval

ambiguity sets. Their size measures perceived ambiguity, with larger ellipsoids signifying

higher ambiguity.

We introduce heterogenous ambiguity sets for home and foreign:

Uh = {r̄h ∈ R |
(
r̄h − r̂h
σ̂h

)2

≤ δ2
h}, (3)

Uf = {r̄f ∈ Rn−1 | (r̄f − r̂f )>Σ̂−1
f (r̄f − r̂f ) ≤ δ2

f}, (4)

where σ̂h is the home standard deviation and Σ̂f is the covariance matrix of foreign.6

Substituting (2) into (1), we write the complete portfolio selection model:

max
(wh,wf )∈X

λ

(
min

r̄h∈Uh,r̄f∈Uf

min
π∈D

E(r̃p − rf )
CVaR(r̃p − rf )

)
+ (1− λ)

(
max

r̄h∈Uh,r̄f∈Uf

max
π∈D

E(r̃p − rf )
CVaR(r̃p − rf )

)
.

(5)

Using the worst-case model (λ = 1), we test whether ambiguity beliefs explain the

puzzle. We start with the home perceived ambiguity estimated from market data, com-

pute the foreign ambiguity set size that produces optimal solutions matching the observed

home bias, and check whether it aligns with the market estimates of foreign perceived

ambiguity. With continuous ambiguity aversion, we take the market-estimated home and

foreign ambiguities as given and check whether a (reasonable) parameter λ exists with an

optimal solution matching the observed home bias. This tests whether ambiguity tastes

explain the puzzle. For robustness, we use two fundamentally different methods to obtain

the market-estimated ambiguities.

To solve (5), we need analytical solutions to the worst- and best-case inner optimization

problems. We formulate the worst-case inner problem in subsection 2.1, building on

Chen, He, and Zhang (2011); Lotfi and Zenios (2018). The best-case inner problem can

be unbounded unless we discipline the model with a suitable returns distribution and

(2003). We can extend our model for a homogeneous ambiguity set to joint ambiguity of means and
covariance, albeit such an extension is not evident for heterogeneous sets.

6The home ambiguity set for a single asset reduces to an interval but can be easily extended to
ellipsoids for multiple home assets, e.g., for the eurozone. The two ambiguity sets are assumed to be
independent.
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develop the general model for a multivariate t-student distribution in subsection 2.2.

2.1 Model with perceived ambiguity

For λ = 1, (5) is a model with perceived ambiguity only. We show it to be SSD consis-

tent, obtain a computationally tractable formulation, and derive analytical conditions on

correlations and ambiguity that induce bias and under-diversification for the case of two

assets. Importantly, we demonstrate the significance of ellipsoidal vs interval ambiguity

sets. For a homogeneous ambiguity set, the model predicts that lower ambiguity implies

less diversified portfolios.

2.1.1 Worst-case portfolio selection

For λ = 1 we have the worst-case MtC maximization model

max
(wh,wf )∈X

min
r̄h∈Uh,r̄f∈Uf

min
π∈D

E(r̃p − rf )
CVaR(r̃p − rf )

. (6)

We establish SSD consistency under the reasonable assumption that a portfolio exists

with positive worst-case excess returns and losses.

Theorem 2.1 (Second order stochastic dominance of worst-case MtC portfolios). Let X+

denote the space of all feasible portfolios that have positive worst-case mean excess return

and worst-case CVaR over the ambiguity sets D, Uh, and Uf . Then, the worst-case MtC

is SSD consistent for all portfolios in X+. (See Appendix C.2 for the proof.)

The worst-case model is formulated as a second-order cone program solvable with

interior point methods (Ben-Tal et al., 2009). This is our work-horse.

Theorem 2.2 (Second-order cone program worst-case model). Model (6) is cast as:

max
w′h∈R+,w′f∈R

n−1
+

((r̂h − rf )− δhσ̂h)w′h +

(
(r̂f − rfe)>w′f − δf

√
w′>f Σ̂fw′f

)
(7)

s.t. − ((r̂h − rf )− δhσ̂h)w′h −
(

(r̂f − rfe)>w′f − δf
√
w′>f Σ̂fw′f

)
+

√
α√

1− α

√
w′2hσ̂

2
h + 2w′hσ̂

>
hfw

′
f + w′>f Σ̂fw′f ≤ 1

w′h + e>w′f > 0.

From the optimal solution w′?h and w′?f , we obtain the solution to (6) as w?h = 1
e>(w′?h+w′?f )

w′?h

and w?f = 1
e>(w′?h+w′?f )

w′?f . (See Appendix D.1 for the proof.)

(r̂ − rf ) is the risk premium and (r̂ − rf )− δσ̂ is the ambiguity-adjusted (aa-) premium.

7



2.1.2 The case of two assets

We obtain the two-asset solution for correlation ρ and ambiguity sets

Uh = {r̄ ∈ R | |r̄ − r̂h|
σ̂h

≤ δh}, (8)

Uf = {r̄ ∈ R | |r̄ − r̂f |
σ̂f

≤ δf},

to study the ambiguity effect on home allocation and diversification. From Theorem 2.2,

we obtain the second-order cone program (Appendix C.3) and give its solutions in the

following theorem, under the reasonable assumption that at least one of the aa-premia

is positive. (The case of both aa-premia negative is uninteresting as it assumes no zero-

premium (risk-free) asset.)

Theorem 2.3 (Optimal allocation with positive correlation). For ρ > 0, and assuming

at least one positive aa-premium, the optimal solution for (6) with assets wh, wf ∈ R is:

i. For ρ(sf − δf ) < (sh − δh) < 1
ρ
(sf − δf ),

w?h =
((sh − δh)− ρ(sf − δf )) σ̂f

((sf − δf )− ρ(sh − δh)) σ̂h + ((sh − δh)− ρ(sf − δf )) σ̂f
, w?f = 1− w?h. (9)

ii. w?h = 0 for (sh − δh) ≤ ρ(sf − δf ), and w?h = 1 for (sh − δh) ≥ 1
ρ
(sf − δf ).

(See Appendix C.3 for the proof.)

Here, s denotes the Sharpe ratio, and we refer to the Sharpe ratio with ambiguity-

adjusted risk premium (s − δ) as the ambiguity-adjusted (aa-) Sharpe ratio. It follows

from this theorem that for positive correlation, allocating everything to the home asset

is optimal if its correlation-scaled aa-Sharpe is higher than the aa-Sharpe of the foreign.

For negative correlation, we always have ρ(sf−δf ) < (sh−δh) < 1
ρ
(sf−δf ). Following

the proof of the theorem, we arrive at case i, and corner solutions are ruled out.

The following corollary gives the ambiguity effect on the optimal allocation.

Corollary 2.1. The partial derivatives of w?h with respect to δh and δf are:

i. If ρ(sf − δf ) < (sh − δh) < 1
ρ
(sf − δf )

∂w?h
∂δh

=
σ̂hσ̂f (1− ρ2)(δf − sf )

[((sf − δf )− ρ(sh − δh)) σ̂h + ((sh − δh)− ρ(sf − δf )) σ̂f ]2
, (10)

∂w?h
∂δf

=
σ̂hσ̂f (1− ρ2)(sh − δh)

[((sf − δf )− ρ(sh − δh)) σ̂h + ((sh − δh)− ρ(sf − δf )) σ̂f ]2
. (11)
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ii. Zero, if (sh − δh) ≤ ρ(sf − δf ) or (sh − δh) ≥ 1
ρ
(sf − δf ).

(See Appendix C.4 for the proof.)

The theorem and its corollary show how the worst-case model can explain the home

bias in a two-country setting. The optimal allocation between an unambiguous home

and an ambiguous foreign asset is obtained from Theorem 2.3 for δh = 0, δf > 0. It

depends on the foreign asset’s perceived ambiguity and the means, standard deviations,

and correlation of home and foreign. It may be optimal to allocate everything to the home

if its correlation-adjusted aa-Sharpe is higher than the aa-Sharpe of the foreign (Theorem

case ii). For middle solutions, the derivative of w?h with respect to the foreign ambiguity

is positive for ρ(sf − δf ) < (sh − δh) < 1
ρ
(sf − δf ) and zero otherwise. Hence, increasing

foreign ambiguity could tilt the portfolio towards home depending on the rewards, risk,

correlations, and perceived ambiguity. It may be optimal for the home allocation to

deviate from the ICAPM benchmark. Similar arguments apply for ρ < 0.

In Figure 1, we illustrate the joint effect of ambiguity and correlation on the optimal

allocation among two assets with identical excess return means and standard deviations

and scaled ambiguity parameters from 0 to 1. Panels A-C display the allocations to home

when ρ = −0.3, 0, 0.3, respectively. To the right of the origin, we display the allocations

with increasing δf and δh < δf ; to the left, we display increasing δh and δh > δf ; at

the origin δh = δf . Since we plot for a range of δh for a given δf , and vice versa, the

plots display more than one curve, converging to a unique point when either ambiguity

takes the extreme value of 1. The unbiased allocation of 0.5 is obtained with identical

ambiguities. To the right, as δf increases with higher foreign ambiguty than home, the

portfolio tilts towards the home. The reverse is true to the left. However, the bias depends

on the correlation. For negative correlation, the home allocation goes up to 0.75; with

zero correlation, it goes up to 0.85; for positive, it reaches 1 for small values of foreign

ambiguity. The horizontal line shows an empirically observed home allocation of 0.80,

about the global average. The optimal allocations do not cross the observed one in panel

A, and ambiguity can not explain the home bias. In the other panels, there are multiple

crossings, and the model can explain the puzzle for small values of foreign ambiguity.

From Corollary 2.1, we obtain portfolio weights to study how ambiguity can tilt them

towards or away from a benchmark to inform the home bias puzzle. In Appendix Corol-

lary C.1, we derive the sensitivity of diversification to ambiguity, showing that ambiguity

is a determinant of under-diversification independently of a benchmark.

Ambiguity sets in the two-asset case do not have correlated returns; we add them next.
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Figure 1: Allocation among two correlated assets with heterogenous ambiguity

This figure illustrates the optimal asset allocation using the worst-case model (6) for two assets
with identical monthly excess return means (0.6%) and standard deviations (4.3%), scaled
ambiguity parameters δh and δf from 0 to 1, and correlation ρ = −0.3, 0, 0.3 in panels A-C,
respectively. To the right of the origin, we display the home allocation with increasing ambiguity
δf and δh < δf ; to the left, we display the allocation for increasing δh and δh > δf ; at the origin
δh = δf . The horizontal line indicates the empirically observed global average home allocation.

(a) ρ = −0.3 (b) ρ = 0 (c) ρ = 0.3

2.1.3 Correlated returns ambiguity

Optimal portfolios should not necessarily be tilted toward less ambiguous assets when

considering risks and rewards. For instance, negatively correlated ambiguous assets may

be preferable to positively correlated unambiguous ones. Our model nests alternative

possibilities, with allocations that may tilt towards or away from less ambiguous assets

depending on the correlations. Such allocations may be optimal and unbiased, depending

on the asset characteristics.

We illustrate that our model with ellipsoidal ambiguity sets can generate solutions

where higher foreign ambiguity does not necessarily induce home bias and that home bias

is possible with higher home ambiguity. We also show that models without correlated

returns ambiguity generate portfolios where relative ambiguity between home and foreign

(m = δh/δf ) less than one always induces bias. In section 5, we go further to show that

models without correlated returns ambiguity do not explain the observed bias.

We consider three ambiguous assets, one home and two foreign, with identical expected

excess monthly returns and standard deviations as in the two-asset problem, a correlation

of 0.4 among home and foreign, and a varying correlation between the foreign assets in

the ellipsoid definition. Ambiguities are scaled from 0 to 1.

We display the optimal home allocation in Figure 2, panels A-C, for foreign correlations

-0.6, 0, or 0.6, respectively. In panel A, we observe a total allocation to the negatively

correlated foreign assets irrespective of the relative ambiguity between home and foreign.

In panel B, we observe that it is possible to have zero home allocations even if foreign

ambiguity is higher than the home; see, e.g., point P with zero home allocation with
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δf = 1 and δh = 0.75. In panel C with positively correlated foreign assets, we observe

positive home allocation even for higher home ambiguity; see point P with positive home

allocation with δf = 0 and δh = 0.25. The model with correlated returns ambiguity sets

is unbiased and lets the data speak.

[ Insert Figure 2 Near Here ]

We solve the same problem using a worst-case MtC model with interval ambiguity sets

(subsection 5.1) and a worst-case mean-variance interval ambiguity model (Boyle et al.,

2012). The results are similar with both models, and we display the latter in panels

D-I.7 Panels D-F show the home allocation for varying foreign ambiguity and δh = 1,

and panels G-I for δh = 0.75. The home allocation is increasing with the correlation,

like in Boyle et al. (2012). Comparing D with A, we observe that the interval model

gives identical results to the ellipsoidal model. However, in G, we observe total allocation

to home when home ambiguity is lower than the foreign, even if the foreign assets are

negatively correlated, whereas, in A, the home allocation remains zero for any δ’s. For zero

correlation, we observe (panel E) that the home allocation is positive 0.15 when all three

assets are entirely ambiguous, increasing to 1 in H. In contrast, B shows home allocations

0 for the same δ’s. For positive correlation, we observe (panel F) a home allocation of

0.40 when the assets are entirely ambiguous, increasing to 1 in I. In contrast, C shows

lower home allocations of 0 and 0.75 for the same δ’s.

In conclusion, interval ambiguity models induce home bias whenever foreign ambiguity

is higher than the home. Depending on the correlations, an ellipsoidal ambiguity model

may or may not be home-biased.

2.1.4 Homogeneous ambiguity set

We drop the home asset and reduce the model to one where investors select among

assets with homogenous ambiguity. We run simulations for two assets with an ellipsoid

of varying size and record the optimal portfolio diversification. We draw returns from a

bivariate t-distribution, with degrees of freedom 11, monthly mean 0.6%, and standard

deviation 8.1%. We run the model for increasing δ a thousand times to obtain optimal

portfolios and repeat the simulation for correlations in the range -0.6 to 0.6.

We compute the commonly used diversification measure Div1 = 1 − w>w, and the

measure of Mitton and Vorkink (2007) accounting for the correlations

Div2 = 1−
(
w>w + (1− w>w)ρ̄

)
, (12)

7We display the results of the model published in the literature, which we implemented with no short
sales, and risk aversion of two following the authors’ suggestion.
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where ρ̄ =
∑n

i,j=1 wiwjρij∑n
i,j=1 wiwj

and ρij denotes correlations.

In Figure 3, we display the averages from our simulations for increasing scaled δ un-

til the diversification flattens out. The curves shift towards lower diversification with

increasing correlation, as expected. Importantly, we also observe that lower ambiguity

comes with less diversified portfolios. This observation aligns with Bianchi and Tallon

(2019); Dimmock et al. (2016a) that ambiguity-averse investors hold less diversified port-

folios. However, our model links diversification to perceived ambiguity and can be tested

using market estimates of perceived ambiguity instead of investor ambiguity tastes.

[ Insert Figure 3 Near Here ]

With heterogeneous ambiguities in two assets, we showed that increasing ambiguity

in one asset tilts the allocation towards the other and reduces diversification. This is

consistent with Figure 3, where we observe that the less diversified portfolios are less

ambiguous, suggesting that households prefer the less ambiguous assets. Put another way,

between heterogeneous assets, the model shifts the allocation to the less ambiguous one

and is less diversified. Among homogeneous assets, the model seeks the least ambiguous

subset, resulting in less diversified portfolios.

2.2 Model with continuous ambiguity aversion

To solve the general model with continuous ambiguity aversion, we need a tractable

formulation of (5) for λ = 0 . To solve the best-case inner problem, we need a tight

lower bound for CVaR of portfolio excess return under ambiguity in distribution, akin to

the upper bound of Scarf (1958) leading to the results of Chen et al. (2011); Lotfi and

Zenios (2018) we used to solve the worst-case problem. We can obtain such a bound from

the fundamental minimization formula of CVaR (Theorem C.1) and Jensen’s inequality.

This lower bound is a piece-wise linear function of portfolio mean excess return and the

variable γ of the fundamental minimization problem (i.e., Value-at-Risk, VaR) and is

unbounded unless we impose a mild assumption of distributions with finite VaR. We

assume a multivariate Student’s t-distribution that captures the stylized facts of returns,

with degrees of freedom ν, mean r̄, and covariance matrix Σ̂. Using a result from Kamdem

(2005), we obtain CVaR analytically to derive a second-order cone program. The model

for continuous ambiguity aversion under a t-distribution is given in the following theorem.

Theorem 2.4 (Second-order cone program with continuous ambiguity aversion). Model (5)
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is cast as: s.t.

max
(w′h,w

′
f )∈Rn

+

(r̂h − rf )w′h + (r̂f − rfe)>w′f − (2λ− 1)

(
δhσ̂hw

′
h + δf

√
w′>f Σ̂fw′f

)
(13)

s.t. −(r̂h − rf )w′h − (r̂f − rfe)>w′f + (2λ− 1)

(
δhσ̂hw

′
h + δf

√
w′>f Σ̂fw′f

)
+esν,α

√
w′2hσ̂

2
h + 2w′hσ̂

>
hfw

′
f + w′>f Σ̂fw′f ≤ 1

w′h + e>w′f > 0.

where esν,α is a parameter obtained from the degrees of freedom of the t-distribution

of portfolio returns and the confidence level (Kamdem, 2005, Theorem 4.2). From the

optimal solution w′?h and w′?f we obtain the solution to (5) as w?h = 1
e>(w′?h+w′?f )

w′?h and

w?f = 1
e>(w′?h+w′?f )

w′?f . (See Appendix Appendix D.2 for the proof.)

3 Equity home bias

We put the models to the data to explain the equity home bias puzzle. We discuss the

data, construct ambiguity sets with two methods, and use the models to select interna-

tionally diversified portfolios. We first use the worst-case ambiguity aversion model to

examine whether perceived ambiguity (beliefs) explains the observed home bias. We then

use continuous ambiguity aversion to infer the ambiguity aversion (tastes) that explains

the bias. We solve the second-order cone programs with CVX (Grant and Boyd, 2014),

using MATLAB 9.13 on a Core i7 CPU, 2.11GHz processor, and 16 GB of RAM.

3.1 Data

We use the equity indices for 21 developed and 19 emerging markets from the MSCI clas-

sification, comparable to the most extensive sample of this literature by Mishra (2015).8

3.1.1 Equity holdings

We calculate portfolio weights for the actual equity holdings based on the foreign portfolio

assets and liabilities reported in the IMF Coordinated Portfolio Investment Survey (CPIS)

database. This is the standard source of data in puzzle studies (Lane and Milesi-Ferretti,

2008), with holdings reported annually in USD for the period 2001-2018.

8Our developed markets sample are Australia, Austria, Belgium, Canada, Denmark, Finland, France,
Germany, Greece, Hong Kong, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Spain, Swe-
den, Switzerland, UK, USA. The emerging markets are Brazil, Chile, China, Colombia, Czechia, Egypt,
Hungary, India, Israel, Korea, Malaysia, Mexico, Peru, Philippines, Poland, Russia, South Africa, Thai-
land, Turkey.
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3.1.2 Market capitalization

Market capitalization in USD is from the World Federation of Exchanges database.9 For

Italy and Finland, we complete the missing values using market capitalization in EUR

and the foreign exchange rates from the European Central Bank. For Denmark and

Sweden, we completed using market capitalization data based on NASDAQ OMX indices

(in local currency) and foreign exchange rates from Thomson Reuters. A few remaining

missing values are filled in from the World Bank database.10

3.1.3 Home bias index

We compute the home bias index (HBI) of investors in country i as the discrepancy of

the actual holdings ai from the holdings wi implied from market capitalization (Mishra,

2015). Let EQi denote home holdings, MCi stock market capitalization, and TEQi total

foreign and domestic equity holdings, i.e., the difference between the country’s market

capitalization and foreign equity liabilities. Hence, ai = EQi/TEQi. Under the ICAPM,

the optimal allocation is each country’s market is wi = MCi/
∑

j∈all countriesMCj, with

HBIi =
ai − wi
1− wi

. (14)

An index value of 1 signifies complete home bias, and 0 signifies optimally diversified

portfolios. In Table A.1, we report the average annual equity home bias index from the

IMF CPIS database for all countries in our sample. We report biases with respect to

the ICAPM and the minimum variance portfolios without short sales. The two estimates

are very close and align with Mishra (2015). The average bias is 0.70 for developed and

0.95 for emerging markets, with standard deviations of 0.14 and 0.06, respectively. Home

bias is high despite increasing market integration; see Figure B.1 for the temporal change

for developed and emerging markets until 2018, Coeurdacier and Rey (2013) for different

regions until 2008, and Ahearne, Griever, and Warnock (2004) for the US until 2000.

3.1.4 Returns

We use the MSCI Investable indices market returns to avoid positive biases when ignoring

investability frictions, such as illiquidity risk and index replicability. Data are from

Datastream for the period January 1999–December 2019, for 252 monthly observations.

For investors in each country, we calculate end-of-month index prices by multiplying the

prices in USD by the corresponding contemporaneous FX spot rate. Rsk-free rates are

from the sources of Table A.3, obtained from Datastream, except for the Euro area and

the US, which are obtained from Refinitiv and Kenneth French’s website, respectively.11

9https://focus.world-exchanges.org/articles/market-capitalisation-q3-2023
10https://data.worldbank.org/indicator/CM.MKT.LCAP.CD
11http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#Developed
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In Table A.2, we give descriptive statistics of excess returns. Most country indices are

negatively skewed, justifying a performance ratio without the normality assumption. We

also report the ambiguity parameters estimated using two methods, as explained below,

for home and the foreign markets corresponding to each home.

3.2 Measuring perceived ambiguity

There has yet to be a consensus on a methodology for constructing ambiguity sets (Bianchi

and Tallon, 2019). A typical approach is to use confidence intervals of the statistical esti-

mator of the means (Boyle et al., 2012; Maccheroni et al., 2013; Peijnenburg, 2018; Uppal

and Wang, 2003). Aı̈t-Sahalia, Matthys, Osambela, and Sircar (2021) proxy ambiguity

using the economic policy uncertainty (EPU) index of Baker, Bloom, and Davis (2016).12

We use both of these fundamentally different approaches.

First, we estimate the covariance matrix from the time series of historical returns over

the whole sample and use a 60-month rolling window to obtain 193 estimates of the

mean returns. We then follow Lotfi and Zenios (2018) to construct the smallest ellipsoid

centered at the minimum sum of distances from all estimates. We call this data-based

ambiguity set. Its size δd,h for each home country is given in Table A.2, together with

δd,f of the ellipsoids for the foreign returns of each country.

Second, we generate EPU-based ambiguity sets following Aı̈t-Sahalia et al. (2021).13

We normalize the country EPU values such that their mean across time and country

equals one, and for each country i, obtain the expected return confidence interval as

r̂i − EPUi
Ψ−1(β)σ̂i√

T
≤ r̄i ≤ r̂i + EPUi

Ψ−1(β)σ̂i√
T

. (15)

EPUi is the mean value of the normalized EPU index of country i over time, Ψ is the

normal cumulative distribution, and β is the confidence level set at 0.99. r̂ and σ̂ are

the mean and standard deviation of returns estimated from the whole sample. We report

the ambiguity set size for each home country δE,h in Table A.2. For the foreign δE,f , we

use simulation to generate an ellipsoid within the (n − 1)-dimensional box specified by

the intervals from (15). We generate random observations uniformly within the box and

construct the smallest ellipsoid as in the data-based method.

The relative ambiguity between home and foreign has a mean value of 0.30 for data-

based and 0.11 for EPU-based, with the foreign ambiguity always higher than the home.

12Proxies of ambiguity by the volatility of volatility (Epstein and Ji, 2013) or errors in volatility
predictions (Dlugosch and Wang, 2022) are available only for two markets (VVIX, V-VSTOX).

13EPU indices are available for Australia, Belgium, Brazil, Canada, Chile, China, Colombia, Denmark,
France, Germany, Greece, Hong Kong, India, Italy, Japan, Korea, Mexico, Netherlands, Russia, Spain,
Sweden, UK, USA. They are obtained from http://www.policyuncertainty.com, accessed May 2022.
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δ is not a function of the ellipsoid’s dimension, and ambiguity does not mechanically

increase with more countries. As a counter-example, taking Greece as the home and

Finland and France as the foreign, we obtain δd,h = 4.17, higher than δd,f = 3.16.14

3.3 Perceived ambiguity channel

We now put the worst-case ambiguity aversion model to the data of developed countries

to examine whether beliefs explain the observed home bias. We select optimal portfolios

for varying levels of foreign perceived ambiguity δf with home ambiguity set size δh =

mδf . We test for m = 0.30, the empirically observed average relative ambiguity for all

developed countries in the sample, for m = 0, assuming unambiguous home returns and

an intermediate m = 0.20. For m = 0.30, the home perceived ambiguity is as obtained

from the data, and for lower values, the investor perceives lower ambiguity for home.

We compute the ICAPM home bias of the optimal portfolios and display the results in

Figure 4 for countries with a large HBI in the range 0.71–0.86 (Australia, Germany, Japan,

USA) and for Norway with HBI 0.38 much below the average of developed markets. The

horizontal line displays the observed HBI from the CPIS data.

[ Insert Figure 4 Near Here ]

We observe that the bias increases with ambiguity in the foreign markets (δf ) and

decreases with the relative ambiguity of home (m). This is in line with existing literature

that ambiguity induces bias. What is remarkable is that the model generates home allo-

cations that match the observed home bias in all cases. The model-generated curves cross

the observed bias line for perceived ambiguity values within the data- and EPU-based

estimates. Similar results for the other developed countries are displayed in Figure B.2,

and this finding holds for the minimum variance home bias index from Table A.1.

We estimate the value of foreign perceived ambiguity for each country for which the

model-generated home allocation matches the observed one. We obtain the optimal

portfolio for increasing δf to find the crossover δc when the optimal portfolio matches the

observed home allocation. The home relative ambiguity m is from Table 1, and we also

consider home relative ambiguity as the average over all countries m̄ for a robustness test.

We report the crossover values δc(m) and δc(m̄) in Table 1 for data-based (panel A) and

EPU-based (panel B) ambiguity estimates. The crossover foreign ambiguity for which

the observed home bias is optimal is well within the data- and EPU-based estimates.

[ Insert Table 1 Near Here ]

In conclusion, the observed equity home allocations are optimal for the worst-case

14The optimal portfolio for this example is not home-biased, but its performance MtC ratio of 0.041
is much lower than 0.089 when diversifying among all 40 countries with significant home bias.
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ambiguity-averse investors with concave, non-decreasing utility functions once we account

for the international markets’ perceived ambiguity. Ambiguity beliefs explain the puzzle.

One potential concern is that our perceived ambiguity estimates are unreasonably high;

this concern is alleviated by obtaining estimates with two fundamentally different and

well-accepted methods. Another concern could be that the market-estimated ambiguities

suggest even higher allocations to home; this is a result of the worst-case ambiguity aver-

sion model. Both concerns are addressed with the continuous ambiguity aversion model.

Taking the perceived ambiguity estimates as given, the general model matches precisely

the observed home allocations with mild ambiguity aversion. Without extreme ambiguity

aversion, we do not get excessively high home allocations, addressing the second concern.

Furthermore, in three cases, the estimated ambiguity aversion is close to experimental

estimates from population samples. This validates the perceived ambiguity estimates we

used to infer the ambiguity aversion, addressing the first concern.

3.4 Ambiguity aversion channel

We use the general model to infer the ambiguity aversion for which the optimal home

allocations match the observed ones under the ambiguity estimates of Table A.2. The

t-distribution degrees of freedom are set to the average of developed countries, ν = 11.15

We list in Table 2 the ambiguity aversion parameter that explains the puzzle for each

country. The average is 0.60 and 0.64 for data- and EPU-based ambiguities, respectively,

with a standard deviation of 0.06. These values are higher than the ambiguity neutral

0.5 (p-value 0.01) and are statistically indistinguishable (p-value 0.11). Hence, mild

ambiguity aversion explains the equity home bias of all developed countries for perceived

ambiguity estimated with two different methods.

[ Insert Table 2 Near Here ]

The results of this section complement our finding above that under worst-case ambiguity-

aversion, perceived ambiguity well within the market estimates generates the observed

home bias. We now find that ambiguity aversion explains the observed bias under the

market estimates of perceived ambiguity. Both beliefs and tastes explain the puzzle.

3.5 Consistency of model estimates

One potential concern is that as the markets’ perceived ambiguity changes, the inferred

ambiguity aversion can change mechanically to match the observed home allocation and

does not reflect the tastes of market participants. Although we obtained consistent ambi-

guity aversion estimates from two fundamentally different ambiguity sets, we go further

15The results are robust to values of ν in the range 3 to 100 observed for developed countries.
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to show that our estimates align with experimental observations and theoretical expec-

tations.

First, our estimates closely match experimental evidence from the literature. On a

sample of US households, Dimmock et al. (2016a) found an average ambiguity aversion of

0.52 compared to our estimates of 0.59 (data-based) or 0.62 (EPU-based). Dimmock et al.

(2016b) find an average ambiguty aversion of 0.56 on a sample of Dutch households, with

our corresponding estimates 0.59 or 0.63.16 The consistency with experimental evidence

alleviates concerns that the inferred values are arbitrary.

Second, we run a test exploiting the fact that the home bias index has been declin-

ing over time; see Ahearne et al. (2004); Coeurdacier and Rey (2013) and Figure B.1.

We apply the model to three equally sized periods. We could potentially explain the

declining home bias through reduced perceived ambiguity, lower ambiguity aversion, or

a combination. Perceived ambiguity may decline over time due to elimination of fac-

tors that create ambiguity, e.g., deregulation (Cooper et al., 2012) and increasing market

integration (Baele et al., 2007), transparency (Gelos and Wei, 2005), and lower infor-

mation asymmetries (Andrade and Chhaochharia, 2010). However, ambiguity tastes are

not expected to change with time, much like constant relative risk aversion is a standard

assumption in macroeconomic and asset pricing models (Hansen and Singleton, 1982;

Mehra and Prescott, 1985; Vissing-Jørgensen and Attanasio, 2003), and has been docu-

mented using panel data (Chiappori and Paiella, 2011). Hence, if we explain the puzzle

for different periods with an invariant ambiguity aversion, then our model results would

be consistent with theoretical expectations.

We consider the periods 1999-2005, 2006-2012, and 2013-2019, and for each, we use a

24-month rolling window to estimate the data-based perceived ambiguity parameter. We

then test both channels as in sections 3.3 and 3.4, for each period. We report summary

results for each period and the full sample in Table 3. In Panel A, we give the average

home, foreign, and relative ambiguity estimates, the cross-over points, and the ambiguity

aversion parameters, and in Panel B, we report the p-values for pairwise differences.

We observe an almost monotonic decrease of the home, foreign, and relative ambiguity

from the earlier to the later periods. The crossover points are within the perceived

ambiguity estimates and are statistically indistinguishable, corroborating the explanation

through ambiguity beliefs. Importantly, the ambiguity aversion that explains the puzzle

remains invariant across the three periods and the full sample (p-values 0.12 to 0.94).

[ Insert Table 3 Near Here ]

16These two references use different ranges for ambiguity aversion, and for the comparison, we trans-
form them linearly into the 0 to 1 range. A statistical test on their estimates found them significantly
different than the ambiguity-neutral value (p-value < 0.01).

18



4 Household portfolio under-diversification

We verify the model prediction that lower homogeneous ambiguity comes with less diver-

sified portfolios using US household data.

4.1 Data

We use the Barber and Odean (2000) database of household monthly portfolio holdings

from a major US discount brokerage house. We aggregate households with multiple

entries to a single household portfolio (Mitton and Vorkink, 2007) and exclude portfolios

with no equity or short positions during the sample period. We consider the three most

recent years in the database —January 1996, 1995,1994— for 23,096, 27,248, and 34,060

households, respectively. To estimate portfolio perceived ambiguity, we use the data-

based approach and the degree of disagreement among financial analysts suggested by

Anderson, Ghysels, and Juergens (2009).

From the original database, we construct two samples with complete data for estimat-

ing ambiguity sets with both methods. We first select portfolios of securities available

in the Center for Research in Security Prices (CRSP) data and obtain monthly returns

over the preceding ten years. Further, we restrict our sample to portfolios of securities in

the Institutional Brokers Estimate System (I/B/E/S) with a monthly standard deviation

of financial analysts’ next-quarter earnings forecasts over the last ten years. From the

first sample, we estimate the data-based ambiguity parameter of each portfolio and drop

the 2% largest and smallest outliers to obtain 18,059, 22,321, and 28,539 portfolios for

the three dates. From the second sample, we estimate the analyst-based ambiguities and

drop the 2% outliers for 8,397, 10,672, and 13,476 portfolios, respectively. In Table A.4,

we give statistics of the number of portfolios of different sizes in our samples, with similar

characteristics to the original data and most households holding very few securities. In

Table A.5 we give statistics for portfolio diversification and returns.

4.2 Measuring perceived ambiguity

We first use a 24-month rolling window over the preceding ten years to obtain 97 estimates

of the mean returns and the covariance matrix over the ten years to construct the data-

based ellipsoid as in subsection 3.2.17

Alternatively, we use the dispersion of analysts’ forecasts for each portfolio security

as a proxy for heterogeneous beliefs about expected returns following Anderson et al.

(2009). We normalize the standard deviation of analyst earning forecasts (SDAF) over

17The ellipsoid is constructed using only those stocks within a portfolio that have at least 24 estimates
of mean returns out of the maximum possible of 97.
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the preceding ten years such that its mean across time and portfolio securities equals one.

For each security i, we obtain the mean return confidence interval as:

r̂i − SDAFi
Ψ−1(β)σ̂i√

T
≤ r̄i ≤ r̂i + SDAFi

Ψ−1(β)σ̂i√
T

. (16)

SDAFi is the mean value of the normalized SDAF, Ψ is the normal cumulative distri-

bution, and β is the confidence level set at 0.99. r̂ and σ̂ are the mean and standard

deviation of returns estimated over the preceding ten years. We construct analyst-based

ambiguity sets from these estimates as with the EPU-based sets in section 3.2.

4.3 Prediction verification

We sort the household portfolios into deciles by diversification and construct each portfo-

lio’s data- and analyst-based ellipsoidal ambiguity sets. In Table 4, we report the average

diversification Div1 (panel A) and Div2 (panel B) together with the average perceived

ambiguity of the portfolios within each decile obtained with the data- or analyst-based

methods (sub-panels i and ii, respectively). We observe monotonically increasing ambigu-

ity with diversification, verifying the model’s prediction. We also report return statistics,

with the portfolio skewness exhibiting a negative relation with diversification as uncovered

by Mitton and Vorkink (2007).

[ Insert Table 4 Near Here ]

We run cross-sectional regressions on diversification with controls for k = 1, 2:

Divk,i = α + β log(δi) + θ1 Sharpei + θ2 Skewi + θ3 log(PrtfValuei) + εi. (17)

The logarithm accounts for non-linearities, and δi is the ambiguity estimate of the ith

portfolio. We control for portfolio Sharpe ratio following standard finance theory, skew-

ness (Skew) following Mitton and Vorkink (2007), and portfolio value (PrtfValue) fol-

lowing Goetzmann and Kumar (2008). We run regressions on data- and analyst-based

ambiguity estimates for January 1996, 1995 and 1994.

We report the results in Table 5 with Div1 (panel A) and Div2 (panel B), with both

data- and analyst-based ambiguity estimates (sub-panels i and ii, respectively). The am-

biguity coefficient is statistically significant in all specifications, comparable in magnitude

to Sharpe ratio and an order of magnitude larger than skewness, establishing ambiguity

as a determinant of household (under)diversification. This finding suggests that house-

holds choose familiar assets (Boyle et al., 2012; Cao et al., 2011). The Sharpe ratio and

skewness coefficients are positive and negative, respectively, in line with standard finance

literature and Mitton and Vorkink (2007).
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[ Insert Table 5 Near Here ]

5 Further tests

We perform additional tests to (i) show that without correlated returns ambiguity, we

can not explain the equity home bias puzzle, (ii) show that the model explains the puzzle

for emerging markets, and (iii) alleviate potential data mining concerns.

5.1 Interval ambiguity

We develop the worst-case model with interval ambiguity sets in Appendix D.3 and

show on a three-country example that it does not generate the observed home bias for

reasonable ambiguity parameters. Specifically, we consider an ambiguity set specified by

a maximum interval and control its magnitude using a shrinkage factor from 0 to 1; 0

shrinks the ambiguity interval to its mean, and one is for maximum ambiguity.

In Figure 5 (panel A), we display the maximum interval ambiguity sets for Japan,

USA, and Germany. Japan is less ambiguous than the other two countries, so a model

with ambiguity aversion tilts the portfolio towards Japan.18 However, we see in panel

B that for the model allocation to match the observed allocation, we must expand the

ambiguity set of the foreign assets (i.e., use a shrinkage factor greater than one) and

shrink the ambiguity set for Japan. Assuming that the Japanese ambiguity is half what

we observe in the data, we obtain the home bias for higher foreign ambiguities than

observed in the data (shrinkage factor above 1.1). If the perceived home ambiguity is as

we observe in the data, we must expand the foreign ambiguity by a factor of more than

two. The model with interval ambiguity sets needs fine-tuning with arbitrary parameter

values to match the observed allocations, failing the test of Cooper et al. (2012). We

obtained similar results with the model of Boyle et al. (2012); the interval ambiguity of

the foreign needs to be increased by a factor of three for the home allocation to match

the observed one.

[ Insert Figure 5 Near Here ]

We also test our continuous ambiguity aversion model with intervals.19 This model

gives an average home bias index of about 0.4 for ambiguity aversion parameters ranging

from 0.5 to 1. The maximum bias (0.6) is well below the observed 0.8.

18This example is not contrived, and our models with ellipsoidal ambiguity sets explain this bias as
well with perceived foreign ambiguity well within the data- and EPU-based ambiguity estimates and for
reasonable home ambiguity aversion parameter.

19Replacing ellipsoids by intervals in the continuous ambiguity aversion model follows easily from the
steps deriving the interval version of the ellipsoidal worst-case model in Appendix D.3.
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Under interval ambiguity, neither a mean-variance model nor our model with higher-

order moments or a continuous ambiguity aversion model can explain the puzzle.

5.2 Equity home bias for emerging markets

Capital controls and other frictions play a significant role in inducing home bias in emerg-

ing markets (Cooper et al., 2012), but we find that correlated returns ambiguity explains

the puzzle. Our main results of Table 1 for beliefs and Table 2 for tastes hold for emerging

markets. We show consolidated results in Table 6, reporting the cross-over ambiguities,

the data- and EPU-based perceived ambiguities, and ambiguity aversion.

Ambiguity beliefs explain the bias for all countries with both data- and EPU-based

ambiguity estimates, except for Russia and Colombia, where the explanation only holds

with the EPU-based estimates. The average ambiguity aversion explaining the bias is

0.58 (data-based) or 0.61 (EPU-based), close to the corresponding values of 0.60 and 0.64

for developed markets (p-value 0.10). Potamites and Zhang (2012) estimate an average

ambiguity aversion of 0.68 on a Chinese population sample, in line with our estimates of

0.58 (data-based) or 0.63 (EPU-based).

[ Insert Table 6 Near Here ]

5.3 Potential data mining

We further test the validity of the household under-diversification results, estimating the

ambiguity parameters using data after the portfolio dates to test for ambiguity expecta-

tions following Mitton and Vorkink (2007). We repeat the portfolio sorts and regression

(17) for January 1994, 1995, and 1996, obtaining ambiguity estimates for the ten years

following the portfolio date. We also performed the tests with observed and expected

ambiguity estimates on portfolios formed in January 1991, 1992, and 1993. The results

(not reported) are in line with Tables 4 and 5.

6 Conclusion

We developed portfolio selection models with heterogeneous ellipsoidal ambiguity sets of

correlated returns and a performance ratio without a normality assumption and explained

the equity home puzzle through the ambiguity channel. First, we develop a parsimonious

model without risk or ambiguity aversion parameters and show it to be consistent second-

order stochastic dominance. We generalize the model for continuous ambiguity aversion.

These models account for perceived ambiguity (beliefs) and ambiguity aversion (tastes)

as potential puzzle explanations.
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Taking the models to the data, we obtain optimal allocations matching those of in-

ternational investors in 21 developed and 19 emerging markets. This is shown both

for worst-case ambiguity aversion under perceived ambiguity well within the market-

estimated ambiguity sets or for mild ambiguity aversions given the market-estimated

ambiguity sets. The global average ambiguity aversion is about 0.6, statistically different

from the ambiguity-neutral 0.5. Our estimates of ambiguity aversion from the observed

asset allocations for a large sample of countries closely match the scant experimental

evidence from US, Dutch, and Chinese population samples. Our findings are robust to

two fundamentally different methods for measuring ambiguity.

The worst-case model applied to a homogeneous ambiguity set predicts lower ambi-

guity with less diversified portfolios. We verify this on a large dataset of US household

portfolios, and by running a regression with controls, we document ambiguity as a sig-

nificant determinant of household (under)diversification.
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Main Figures and Tables

Figure 2: Optimal allocation with ellipsoidal and interval ambiguities

This figure illustrates the home allocation for the case of three ambiguous correlated assets as
a function of the ambiguity parameters when means and standard deviations of all assets are
equal and correlation among the foreign assets ρf of -0.6, 0, and 0.6. Ambiguity parameters
are scaled in the range 0 to 1. Panels A-C display home allocations for varying home and
foreign ambiguity using model (6) with ellipsoidal ambiguity sets. Panels D-F show the home
allocation using interval ambiguity sets according to Boyle et al. (2012) with a home ambiguity
of 1 and varying foreign ambiguities. In panels G-I, the home ambiguity is 0.75. The monthly
excess return means and standard deviation of the three assets are equal to 0.6% and 4.3%,
respectively, and the correlation between home and foreign assets is 0.40.

(a) Ellipsoidal, ρf = −0.6 (b) Ellipsoidal, ρf = −0 (c) Ellipsoidal, ρf = 0.6

(d) Interval, δh = 1, ρf = −0.6 (e) Interval, δh = 1, ρf = 0 (f) Interval, δh = 1, ρf = 0.6

(g) Interval, δh = 0.75, ρf = −0.6 (h) Interval, δh = 0.75, ρf = 0 (i) Interval, δh = 0.75, ρf = 0.6
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Figure 3: Diversification with a homogenous ambiguity set

This figure illustrates the results of a simulation that estimates diversification measures with
a homogenous ambiguity parameter δ for a portfolio of two assets using the worst-case model.
Panels A and B show the results for diversification measures Div1 and Div2, for correlation
coefficients ranging from -0.6 to 0.6. For each value of δ, we display the average diversification
measures over 1000 repetitions of the model until the diversification flattens out, and we scale
δ from 0 to 1. Returns are generated from a bivariate t-distribution, with degrees of freedom
11, monthly mean 0.6%, and standard deviation 8.1%.

(a) Div1 (b) Div2
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Figure 4: Optimal home allocation and perceived ambiguity

This figure illustrates the home bias index (HBI) of the worst-case model optimal allocations
with respect to the market capitalization, as a function of foreign ambiguity (δf ) for relative
ambiguity of home to foreign (m) equal to 0, 0.2, or 0.3. The horizontal line indicates the
observed time-average home bias estimated with respect to the ICAPM. Results are displayed
for investors in Australia, Japan, Germany, USA, and Norway, with portfolios selected from
the 21 developed and 19 emerging markets sample. The sample period spans January 1999 to
December 2019.

(a) Australia (b) Germany

(c) Japan (d) USA

(e) Norway
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Figure 5: Interval ambiguity does not explain the puzzle

This figure illustrates the optimal allocation to the home market, with varying ambiguity in
the home and foreign mean returns, using the worst-case model with interval ambiguity sets
on a sample consisting of Japan (home) and Germany and USA (foreign). Panel A reports the
ambiguity intervals of mean returns. Panel B illustrates the home allocation as a function of
foreign mean returns ambiguity obtained by adjusting the interval of panel A by a shrinkage
factor from 0 to 1, and for home ambiguity with shrinkage factor 0, 0.5, or 1. The sample period
spans from January 1999 to December 2019.

(a) Interval ambiguity sets

Germany Japan USA

Min -0.52 -0.35 -0.16
Max 1.81 1.29 1.57
Interval 2.34 1.64 1.73

(b) Home allocations from the model with worst-case interval ambiguity sets
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Table 1: Perceived ambiguity and the equity home bias puzzle in developed markets

This table reports the cross-over foreign ambiguity parameter δc for which the optimal allocation
with the worst-case model has a home bias equal to the observed one. Also reported are the
data- (δd,f ) and EPU-based (δE,f ) ambiguity estimates for the set of foreign markets for each
country, the corresponding home estimates (δd,h, δE,h), and the relative ambiguity (m). Panel
A and B report results with the data- and EPU-based ambiguity estimates, respectively. δc(m)
and δc(m̄) are the cross-over values for the relative ambiguity of each country (m) or the country
average (m̄). In panel A, the model selects portfolios from the sample of 21 developed and 19
emerging markets. The model is solved in panel B for the sub-sample of 15 developed and eight
emerging markets of countries with EPU ratings. Countries without EPU data have missing
entries marked -. The sample period spans January 1999–December 2019.

(a) Data-based (b) EPU-based

Country δc(m) δc(m̄) δd,f δd,h m δc(m) δc(m̄) δE,f δE,h m

Australia 2.9 2.8 12.21 3.92 0.32 1.7 1.7 7.07 0.71 0.10
Austria 3.3 3.1 12.46 4.43 0.36 - - - - -
Belgium 3.3 3.3 12.47 3.84 0.31 2.6 2.6 7.99 0.78 0.10
Canada 3.0 3.0 12.34 3.71 0.30 1.6 1.5 7.66 1.14 0.15
Denmark 1.4 1.5 12.48 2.96 0.24 0.6 0.6 8.75 0.80 0.09
Finland 3.7 5.1 12.47 2.87 0.23 - - - - -
France 3.3 3.5 12.23 3.13 0.26 2.3 2.1 6.32 1.30 0.21
Germany 3.2 3.3 12.24 3.13 0.26 2.4 2.3 7.06 1.02 0.15
Greece - - 12.37 4.17 0.34 5.6 5.8 8.56 0.88 0.10
Hong Kong 2.4 2.5 12.31 3.23 0.26 1.7 1.7 9.16 0.94 0.10
Italy 5.8 5.2 12.45 4.07 0.33 2.9 2.9 7.16 0.80 0.11
Japan 3.6 3.3 12.20 4.29 0.35 2.1 2.2 10.67 0.80 0.08
Netherlands 3.1 3.3 12.41 3.15 0.25 1.9 2.0 7.46 0.68 0.09
New Zealand 1.4 1.3 12.10 4.26 0.35 - - - - -
Norway 2.7 2.5 12.38 4.35 0.35 - - - - -
Portugal 6.1 5.4 12.44 4.30 0.35 - - - - -
Spain 3.6 3.6 12.46 3.71 0.30 2.7 2.7 7.74 0.85 0.11
Sweden 3.2 3.2 12.33 3.41 0.28 1.9 1.9 7.75 0.67 0.09
Switzerland 2.1 2.2 12.31 3.55 0.29 - - - - -
UK 3.0 3.2 12.46 3.15 0.25 2.2 2.2 9.07 0.88 0.10
USA 2.6 2.5 12.00 3.91 0.33 1.5 1.5 8.96 0.90 0.10

Mean 3.2 3.2 12.34 3.69 0.30 2.2 2.2 8.09 0.88 0.11
StdDev 1.1 1.1 0.13 0.51 0.04 1.1 1.1 1.11 0.17 0.03
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Table 2: Ambiguity aversion and the equity home bias puzzle in developed markets

This table reports the ambiguity aversion parameter of the home investor for which the optimal
allocations with the continuous ambiguity-aversion model have a home bias equal to the observed
one. Perceived ambiguity is obtained using both the data- and EPU-based methods. The model
selects portfolios from the sample of 21 developed and 19 emerging markets for the data-based
column. For the EPU-based column, the model is solved for the sub-sample of 15 developed
and eight emerging markets of countries with EPU ratings. Countries without EPU data have
missing entries marked -. The sample period spans January 1999–December 2019.

Country Data- EPU-
based based

Australia 0.57 0.62
Austria 0.57 -
Belgium 0.58 0.66
Canada 0.58 0.60
Denmark 0.53 0.53
Finland 0.60 -
France 0.61 0.69
Germany 0.59 0.67
Greece 0.84 0.84
Hong Kong 0.58 0.60
Italy 0.66 0.70
Japan 0.68 0.60
Netherlands 0.59 0.63
New Zealand 0.54 -
Norway 0.52 -
Portugal 0.68 -
Spain 0.61 0.68
Sweden 0.54 0.62
Switzerland 0.59 -
UK 0.62 0.62
USA 0.62 0.59

Mean 0.60 0.64
StdDev 0.06 0.06
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Table 3: The stability of ambiguity tastes over time

This table reports the average of ambiguity tastes and beliefs for developed markets during
different subperiods. In Panel A, we report the average of cross-over foreign ambiguity parameter
δc and ambiguity aversion parameter λ for which the optimal allocations with the worst-case
and continuous ambiguity aversion models, respectively, have home bias equal to the observed
one. Also reported are the average of data-based ambiguity estimates for the set of foreign
markets (δd,f ), the corresponding home estimate (δd,h), and the relative ambiguity (m). The
δc(m) and δc(m̄) are the cross-over values for relative ambiguity for each country (m) or the
country average (m̄). Panel B reports the p-value of the pairwise differences across subperiods.
The model is solved on the sample of 21 developed and 19 emerging markets and for three equal
subperiods of the overall 20-year sample period P, namely P1 from 1999 to 2005, P2 from 2006
to 2012, and P3 from 2013 to 2019.

δc(m) δc(m̄) δd,f δd,h m λ

(a) Ambiguity beliefs, tastes, and cross-over

P1 (1999-2005) 2.7 2.8 13.51 4.44 0.33 0.60
P2 (2006-2012) 3.2 3.2 11.50 4.94 0.43 0.64
P3 (2013-2019) 2.4 2.3 9.97 2.07 0.21 0.62
P (1999-2019) 3.2 3.2 12.34 3.69 0.30 0.60

(b) p-values

P1-P2 0.41 0.47 0.00 0.11 0.00 0.12
P1-P3 0.51 0.36 0.00 0.00 0.00 0.47
P2-P3 0.17 0.12 0.00 0.00 0.00 0.55
P1-P 0.30 0.33 0.00 0.00 0.10 0.94
P2-P 0.96 0.97 0.00 0.00 0.00 0.16
P3-P 0.11 0.04 0.00 0.00 0.00 0.52
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Table 4: Household portfolio diversification sorts and their ambiguity

This table reports the average diversification and perceived ambiguity, together with return statistics for household portfolios sorted into deciles by
diversification measure Div1 (panel A) and Div2 (panel B). In sub-panels i and ii, the perceived ambiguity of the portfolio is estimated using the
data- and analyst-based methods, respectively. We report the number of portfolios N in each decile, average diversification (Div1 respectively Div2),
average perceived ambiguity (δ), expected return (Mean), standard deviation (StdDev), and skewness (Skew). We report data for the January 1996,
1995, and 1994 portfolios. Statistics are for monthly returns.

(a) Div1

January 1996 January 1995 January 1994

Decile N Div1 δ Mean StdDev Skew N Div1 δ Mean StdDev Skew N Div1 δ Mean StdDev Skew

(i) Data-based

1 6201 0.00 3.63 0.017 0.114 0.266 7675 0.00 3.74 0.016 0.114 0.293 9760 0.00 3.70 0.016 0.114 0.245
2 1350 0.13 4.64 0.019 0.098 0.199 1677 0.13 4.62 0.017 0.100 0.268 2153 0.14 4.63 0.017 0.100 0.200
3 1358 0.35 4.75 0.018 0.087 0.136 1674 0.34 4.90 0.016 0.087 0.132 2157 0.36 4.93 0.017 0.089 0.132
4 1365 0.46 4.76 0.018 0.083 0.140 1689 0.46 4.92 0.016 0.083 0.119 2154 0.46 4.90 0.017 0.084 0.118
5 1355 0.51 4.94 0.017 0.079 0.088 1690 0.50 5.02 0.016 0.080 0.128 2153 0.51 5.10 0.017 0.081 0.100
6 1352 0.60 5.50 0.018 0.074 0.050 1684 0.59 5.62 0.016 0.073 0.023 2152 0.60 5.72 0.017 0.074 0.011
7 1349 0.67 5.74 0.018 0.070 -0.024 1669 0.66 5.86 0.016 0.069 -0.004 2137 0.67 5.89 0.016 0.070 -0.038
8 1336 0.74 6.25 0.018 0.065 -0.100 1654 0.74 6.36 0.016 0.064 -0.063 2141 0.73 6.45 0.016 0.064 -0.126
9 1324 0.81 6.83 0.017 0.058 -0.209 1629 0.80 6.94 0.016 0.057 -0.201 2088 0.80 7.13 0.016 0.059 -0.220
10 1069 0.88 7.95 0.017 0.052 -0.395 1280 0.88 8.03 0.016 0.052 -0.346 1644 0.88 8.22 0.016 0.053 -0.411

(ii) Analyst-based

1 4532 0.00 2.62 0.012 0.088 -0.012 5751 0.00 2.63 0.011 0.087 0.013 7279 0.00 2.75 0.012 0.086 -0.046
2 444 0.17 4.53 0.013 0.076 -0.050 567 0.17 4.65 0.012 0.075 -0.042 717 0.18 4.88 0.013 0.076 -0.070
3 448 0.35 4.45 0.013 0.070 -0.096 568 0.36 4.60 0.011 0.069 -0.125 718 0.37 4.68 0.013 0.068 -0.145
4 445 0.44 4.57 0.012 0.066 -0.104 568 0.44 4.70 0.012 0.068 -0.095 717 0.45 4.68 0.013 0.066 -0.165
5 449 0.48 4.39 0.012 0.066 -0.119 569 0.48 4.38 0.011 0.065 -0.137 718 0.48 4.60 0.013 0.064 -0.178
6 448 0.51 4.74 0.012 0.065 -0.101 565 0.51 4.85 0.011 0.065 -0.117 711 0.51 4.99 0.013 0.064 -0.200
7 445 0.60 5.72 0.013 0.058 -0.130 566 0.60 5.77 0.012 0.058 -0.173 705 0.60 6.05 0.013 0.059 -0.245
8 436 0.66 6.11 0.013 0.056 -0.198 557 0.67 6.20 0.012 0.055 -0.213 708 0.66 6.36 0.013 0.055 -0.295
9 430 0.74 7.09 0.012 0.049 -0.300 542 0.74 7.18 0.012 0.051 -0.325 688 0.74 7.36 0.013 0.052 -0.396
10 320 0.82 8.54 0.013 0.046 -0.477 419 0.83 8.85 0.012 0.047 -0.408 515 0.83 8.99 0.014 0.047 -0.522
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Table 4: (continued)

(b) Div2

January 1996 January 1995 January 1994

Decile N Div2 δ Mean StdDev Skew N Div2 δ Mean StdDev Skew N Div2 δ Mean StdDev Skew

(i) Data-based

1 6201 0.00 3.63 0.017 0.114 0.266 7675 0.00 3.74 0.016 0.114 0.293 9760 0.00 3.70 0.016 0.114 0.245
2 1353 0.02 4.62 0.019 0.097 0.188 1676 0.02 4.62 0.017 0.099 0.251 2150 0.02 4.66 0.017 0.099 0.188
3 1361 0.08 4.77 0.018 0.085 0.076 1682 0.08 4.93 0.016 0.083 0.066 2166 0.08 4.94 0.017 0.084 0.035
4 1364 0.14 4.83 0.018 0.080 0.052 1689 0.14 5.00 0.017 0.080 0.061 2154 0.14 5.00 0.017 0.082 0.052
5 1350 0.19 5.01 0.017 0.079 0.099 1686 0.18 5.13 0.016 0.080 0.103 2148 0.19 5.20 0.016 0.080 0.088
6 1356 0.25 5.42 0.017 0.074 0.045 1673 0.24 5.54 0.016 0.074 0.056 2148 0.24 5.63 0.017 0.076 0.045
7 1361 0.31 5.81 0.018 0.070 -0.013 1675 0.30 5.91 0.016 0.068 -0.023 2145 0.31 5.99 0.016 0.069 -0.063
8 1330 0.38 6.27 0.017 0.065 -0.104 1655 0.37 6.45 0.016 0.064 -0.072 2124 0.37 6.45 0.016 0.066 -0.098
9 1295 0.46 6.93 0.017 0.061 -0.186 1614 0.45 6.89 0.016 0.060 -0.122 2061 0.44 7.14 0.016 0.061 -0.172
10 1088 0.56 7.63 0.017 0.056 -0.239 1296 0.55 7.72 0.015 0.056 -0.232 1683 0.55 7.87 0.016 0.057 -0.269

(ii) Analyst-based

1 4532 0.00 2.62 0.012 0.088 -0.012 5751 0.00 2.63 0.011 0.087 0.013 7279 0.00 2.75 0.012 0.086 -0.046
2 445 0.02 4.64 0.013 0.074 -0.049 568 0.02 4.74 0.012 0.075 -0.048 717 0.02 4.94 0.013 0.075 -0.072
3 446 0.07 4.61 0.012 0.069 -0.100 569 0.08 4.82 0.011 0.067 -0.111 716 0.08 4.89 0.013 0.067 -0.154
4 445 0.11 4.49 0.013 0.067 -0.125 567 0.12 4.58 0.012 0.067 -0.160 716 0.11 4.71 0.013 0.067 -0.152
5 449 0.15 4.61 0.012 0.065 -0.141 567 0.15 4.83 0.012 0.066 -0.114 716 0.15 4.84 0.013 0.065 -0.208
6 448 0.18 4.82 0.013 0.064 -0.096 567 0.18 4.78 0.011 0.063 -0.115 706 0.18 5.00 0.012 0.062 -0.195
7 443 0.23 5.48 0.012 0.059 -0.157 564 0.23 5.52 0.011 0.059 -0.167 713 0.22 5.87 0.013 0.059 -0.242
8 439 0.29 6.19 0.012 0.055 -0.162 548 0.28 6.31 0.012 0.056 -0.194 698 0.28 6.39 0.013 0.056 -0.287
9 423 0.36 6.96 0.013 0.052 -0.297 545 0.35 7.01 0.012 0.053 -0.303 681 0.34 7.20 0.013 0.052 -0.381
10 327 0.46 8.19 0.013 0.048 -0.433 426 0.45 8.43 0.011 0.049 -0.423 534 0.44 8.53 0.013 0.050 -0.516
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Table 5: Regression of household portfolio diversification on perceived ambiguity

This table reports the coefficient of regression (17) of the diversification measure Div1 (panel A) and Div2 (panel B) on perceived ambiguity and

control variables. In sub-panels i and ii, the main independent variable log(δ) is estimated using the data- and analyst-based methods, respectively.

The regression is run for portfolio sorts in January 1996, 1995, and 1994. Columns (1)-(4) show the results with incremental addition of control

variables, namely portfolio Sharpe ratio (Sharpe), skewness (Skew), and portfolio value in USD (log(PrtfValue)). ***, **, and *denote statistical

significance at the 0.01, 0.05, and 0.10 levels, respectively, with p-values in parentheses.

(a) Div1

January 1996 January 1995 January 1994

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

(i) Data-based

log(δ) 0.59*** 0.52*** 0.51*** 0.46*** 0.63*** 0.58*** 0.57*** 0.52*** 0.58*** 0.52*** 0.52*** 0.47***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Sharpe 0.77*** 0.74*** 0.58*** 0.48*** 0.45*** 0.32*** 0.57*** 0.55*** 0.41***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Skew -0.03*** -0.02*** -0.02*** -0.01*** -0.01*** -0.01***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

log(PrtfValue) 0.03*** 0.04*** 0.04***
(0.00) (0.00) (0.00)

Constant -0.54*** -0.59*** -0.57*** -0.80*** -0.62*** -0.64*** -0.62*** -0.84*** -0.54*** -0.56*** -0.55*** -0.79***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Num. Obs. 18059 18059 18059 18059 22321 22321 22321 22321 28539 28539 28539 28539
Adj. R2 0.46 0.51 0.52 0.54 0.48 0.50 0.50 0.52 0.46 0.50 0.50 0.52

(ii) Analyst-based

log(δ) 0.58*** 0.55*** 0.54*** 0.53*** 0.56*** 0.53*** 0.53*** 0.51*** 0.55*** 0.53*** 0.52*** 0.51***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Sharpe 0.61*** 0.61*** 0.57*** 0.69*** 0.67*** 0.63*** 0.63*** 0.61*** 0.58***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Skew -0.02*** -0.02*** -0.03*** -0.03*** -0.04*** -0.04***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

log(PrtValue) 0.01*** 0.01*** 0.01***
(0.00) (0.00) (0.00)

Constant -0.49*** -0.56*** -0.56*** -0.64*** -0.47*** -0.55*** -0.55*** -0.65*** -0.49*** -0.58*** -0.57*** -0.67***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Num. Obs. 8397 8397 8397 8397 10672 10672 10672 10672 13476 13476 13476 13476
Adj. R2 0.73 0.77 0.77 0.77 0.72 0.76 0.76 0.77 0.70 0.75 0.76 0.76
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Table 5: (continued)

(b) Div2

January 1996 January 1995 January 1994

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

(i) Data-based

log(δ) 0.33*** 0.29*** 0.28*** 0.26*** 0.34*** 0.31*** 0.31*** 0.28*** 0.31*** 0.28*** 0.28*** 0.25***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Sharpe 0.39*** 0.37*** 0.29*** 0.20*** 0.19*** 0.13*** 0.26*** 0.25*** 0.18***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Skew -0.01*** -0.01*** -0.01*** -0.00** -0.00*** -0.00
(0.00) (0.00) (0.00) (0.04) (0.00) (0.20)

log(PrtfValue) 0.02*** 0.02*** 0.02***
(0.00) (0.00) (0.00)

Constant -0.33*** -0.36*** -0.35*** -0.47*** -0.36*** -0.37*** -0.36*** -0.48*** -0.32*** -0.33*** -0.32*** -0.45***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Num. Obs. 18059 18059 18059 18059 22321 22321 22321 22321 28539 28539 28539 28539
Adj. R2 0.43 0.48 0.48 0.50 0.45 0.46 0.46 0.48 0.43 0.45 0.45 0.48

(ii) Analyst-based

log(δ) 0.25*** 0.24*** 0.23*** 0.23*** 0.23*** 0.22*** 0.22*** 0.21*** 0.23*** 0.22*** 0.21*** 0.21***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Sharpe 0.27*** 0.27*** 0.25*** 0.28*** 0.27*** 0.24*** 0.25*** 0.23*** 0.21***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Skew -0.01*** -0.01*** -0.02*** -0.02*** -0.02*** -0.02***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

log(PrtfValue) 0.01*** 0.01*** 0.01***
(0.00) (0.00) (0.00)

Constant -0.22*** -0.25*** -0.25*** -0.30*** -0.21*** -0.24*** -0.24*** -0.29*** -0.21*** -0.25*** -0.24*** -0.29***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Num. Obs. 8397 8397 8397 8397 10672 10672 10672 10672 13476 13476 13476 13476
Adj. R2 0.64 0.67 0.68 0.68 0.63 0.66 0.67 0.67 0.62 0.66 0.66 0.67
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Table 6: Ambiguity and equity home bias puzzle in emerging markets

This table reports the cross-over foreign ambiguity parameter δc and the ambiguity aversion
parameter λ of the home investor for which the optimal allocations with the worst-case and con-
tinuous ambiguity aversion models, respectively, have home bias equal to the observed one. Also
reported are the data- (δd,f ) and EPU-based (δE,f ) ambiguity estimates for the set of foreign
markets for each country, the corresponding home estimates (δd,h, δE,h), and the relative ambi-
guity (m). Panel A and B report results with the data- and EPU-based ambiguity estimates,
respectively. δc(m) and δc(m̄) are the cross-over values for relative ambiguity for each country
(m) or the country average (m̄). In panel A, the model selects portfolios from the sample of 21
developed and 19 emerging markets. The model is solved in panel B for the sub-sample of 15
developed and eight emerging markets of countries with EPU ratings. Countries without EPU
data have missing entries marked -. The sample period spans January 1999–December 2019.

Country δc(m) δc(m̄) δd,f δd,h m λ δc(m) δc(m̄) δE,f δE,h m λ

(a) Data-based (b) EPU-based

Brazil 1.4 1.4 12.49 4.61 0.37 0.58 1.5 1.5 11.13 1.07 0.10 0.58
Chile 2.5 2.5 12.24 4.53 0.37 0.60 2.0 2.0 8.19 0.81 0.10 0.63
China 2.5 2.5 12.38 4.28 0.35 0.58 2.0 2.0 8.91 1.45 0.16 0.63
Colombia - - 12.21 6.46 0.53 0.50 1.3 1.3 8.35 0.74 0.09 0.58
Czechia 2.5 2.4 12.41 5.08 0.41 0.56 - - - - - -
Egypt 1.9 1.7 11.87 5.42 0.46 0.55 - - - - - -
Hungary 2.8 3.4 12.16 3.42 0.28 0.58 - - - - - -
India 2.6 2.6 12.20 3.98 0.33 0.55 2.0 2.0 8.87 0.72 0.08 0.63
Israel 3.8 3.2 11.94 2.94 0.25 0.63 - - - - - -
Korea 3.1 3.4 12.07 2.68 0.22 0.57 2.3 2.2 8.04 0.94 0.12 0.65
Malaysia 2.8 3.1 12.65 2.48 0.20 0.60 - - - - - -
Mexico 3.1 3 12.36 4.57 0.37 0.61 2.0 2.0 8.06 0.63 0.08 0.63
Peru 1.8 1.7 12.19 4.68 0.38 0.53 - - - - - -
Philippines 3 2.9 11.23 4.19 0.37 0.61 - - - - - -
Poland 4.5 5.1 12.23 3.96 0.32 0.63 - - - - - -
Russia - 2.1 11.37 6.10 0.54 0.58 3.0 0.7 8.61 1.05 0.12 0.55
South Africa 2.2 2.3 12.23 3.49 0.29 0.56 - - - - - -
Thailand 2.6 2.4 12.12 2.67 0.22 0.53 - - - - - -
Turkey 2.5 3.2 12.83 3.82 0.30 0.58 - - - - - -

Mean 2.7 2.7 12.17 4.18 0.34 0.58 2.0 1.7 8.77 0.93 0.11 0.61
StdDev 0.7 0.8 0.38 1.11 0.10 0.03 0.5 0.5 1.01 0.27 0.03 0.04
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Online Appendix

A Data Appendix

Table A.1: Descriptive statistics of equity home bias

This table reports the average home allocation (Home), market capitalization (Market), home
allocation according to minimum variance without short-sales (MinV), and home bias indices
with respect to market capitalization HBI(ICAPM) and minimum variance HBI(MinV). Data
from the IMF CPIS database.

Home Market MinV HBI HBI
(ICAPM) (MinV)

(a) Developed markets

Australia 0.80 0.021 0.19 0.80 0.76
Austria 0.59 0.002 0.00 0.59 0.59
Belgium 0.67 0.006 0.00 0.67 0.67
Canada 0.70 0.033 0.21 0.69 0.62
Denmark 0.58 0.004 0.00 0.58 0.58
Finland 0.67 0.004 0.00 0.67 0.67
France 0.76 0.039 0.00 0.75 0.76
Germany 0.72 0.030 0.00 0.71 0.72
Greece 0.96 0.002 0.00 0.96 0.96
Hong Kong 0.91 0.041 0.00 0.90 0.91
Italy 0.75 0.014 0.00 0.75 0.75
Japan 0.87 0.081 0.43 0.86 0.77
Netherlands 0.40 0.014 0.00 0.39 0.40
New Zealand 0.63 0.001 0.43 0.63 0.35
Norway 0.38 0.004 0.00 0.38 0.38
Portugal 0.77 0.002 0.07 0.77 0.76
Spain 0.90 0.020 0.00 0.90 0.90
Sweden 0.65 0.010 0.00 0.64 0.65
Switzerland 0.75 0.023 0.68 0.74 0.21
USA 0.84 0.396 0.23 0.73 0.78
UK 0.67 0.064 0.35 0.65 0.50

Mean 0.71 0.04 0.12 0.70 0.65
StdDev 0.15 0.08 0.19 0.14 0.19

(b) Emerging markets

Brazil 0.99 0.015 0.46 0.99 0.98
Chile 0.87 0.004 0.36 0.87 0.80
China 0.99 0.081 0.00 0.99 0.99
Colombia 0.94 0.002 0.22 0.94 0.92
Czechia 0.89 0.001 0.14 0.89 0.87
Egypt 1.00 0.001 0.30 1.00 0.99
Hungary 0.85 0.001 0.09 0.85 0.83
India 1.00 0.022 0.01 1.00 1.00
Israel 0.84 0.003 0.11 0.84 0.82
Korea 0.93 0.017 0.00 0.93 0.93
Malaysia 0.96 0.006 0.28 0.96 0.95
Mexico 0.99 0.006 0.13 0.99 0.99
Peru 0.97 0.001 0.01 0.97 0.97
Philippines 1.00 0.002 0.16 1.00 1.00
Poland 0.98 0.002 0.06 0.98 0.98
Russia 1.00 0.012 0.03 1.00 1.00
South Africa 0.90 0.013 0.40 0.90 0.84
Thailand 0.99 0.005 0.00 0.99 0.99
Turkey 1.00 0.003 0.14 1.00 1.00

Mean 0.95 0.01 0.15 0.95 0.94
StdDev 0.06 0.02 0.15 0.06 0.07
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Table A.2: Descriptive statistics of returns

This table reports descriptive statistics for the excess returns for all countries in our sample:
mean, standard deviation, skewness, excess kurtosis, Value-at-Risk (VaR), Conditional-Value-
at-Risk (CVaR), mean-to-CVAR (MtC) and Sharpe ratio for each country’s monthly excess
USD returns over the one-month USA T-Bill rate. It also displays the data- and EPU-based
estimates of mean returns ambiguity for home δd,h and δE,h, and foreign δd,f and δE,f . Countries
without EPU ratings have missing entries marked -. VaR, CVaR, and MtC are computed at
the 95% confidence level. Mean, StdDev, VaR, and CVaR are in percentage points. The sample
period spans January 1999–December 2019.

Country Mean StdDev Skew Kurt VaR CVaR MtC Sharpe δd,h δd,f δE,h δE,f

(a) Developed markets

Australia 0.77 5.98 -0.54 1.99 8.35 13.77 0.06 0.13 3.92 12.21 0.71 7.07
Austria 0.60 6.81 -0.87 4.32 9.45 15.91 0.04 0.09 4.43 12.46 - -
Belgium 0.35 6.00 -1.22 5.60 9.46 15.09 0.02 0.06 3.84 12.47 0.78 7.99
Canada 0.71 5.61 -0.53 2.62 8.39 12.09 0.06 0.13 3.71 12.34 1.14 7.66
Denmark 0.87 5.70 -0.73 2.69 9.38 13.63 0.06 0.15 2.96 12.48 0.80 8.75
Finland 0.60 8.11 0.10 2.07 13.42 18.13 0.03 0.07 2.87 12.47 - -
France 0.49 5.80 -0.46 0.99 10.58 13.62 0.04 0.08 3.13 12.23 1.30 6.32
Germany 0.46 6.50 -0.37 1.64 10.25 15.48 0.03 0.07 3.13 12.24 1.02 7.06
Greece -0.37 10.55 -0.23 0.68 18.01 24.24 -0.02 -0.03 4.17 12.37 0.88 8.56
Hong Kong 0.70 6.04 -0.17 1.46 9.77 13.12 0.05 0.12 3.23 12.31 0.94 9.16
Italy 0.24 6.61 -0.22 0.58 11.20 14.70 0.02 0.04 4.07 12.45 0.80 7.16
Japan 0.32 4.77 -0.12 0.33 7.98 9.91 0.03 0.07 4.29 12.20 0.80 10.67
Netherlands 0.46 5.76 -0.71 1.94 9.65 14.05 0.03 0.08 3.15 12.41 0.68 7.46
New Zealand 0.93 5.74 -0.44 0.79 8.72 12.55 0.07 0.16 4.26 12.10 - -
Norway 0.86 7.28 -0.65 2.79 9.39 16.38 0.05 0.12 4.35 12.38 - -
Portugal 0.09 6.30 -0.33 0.82 10.03 13.97 0.01 0.01 4.30 12.44 - -
Spain 0.40 6.70 -0.14 1.04 10.08 14.31 0.03 0.06 3.71 12.46 0.85 7.74
Sweden 0.78 6.98 -0.15 1.93 11.70 16.00 0.05 0.11 3.41 12.33 0.67 7.75
Switzerland 0.51 4.43 -0.46 0.62 7.37 10.35 0.05 0.12 3.55 12.31 - -
UK 0.33 4.67 -0.38 1.45 7.22 10.17 0.03 0.07 3.15 12.46 0.88 9.07
USA 0.52 4.33 -0.64 1.02 7.85 9.84 0.05 0.12 3.91 12.00 0.90 8.96

Mean 0.51 6.22 -0.44 1.78 9.92 14.16 0.04 0.09 3.69 12.34 0.88 8.09
StdDev 0.30 1.37 0.30 1.30 2.37 3.22 0.02 0.05 0.51 0.13 0.17 1.11

(b) Emerging markets

Brazil 1.38 10.55 -0.04 1.16 14.06 21.93 0.06 0.13 4.61 12.49 1.07 11.13
Chile 0.67 6.26 -0.23 1.34 9.15 13.24 0.05 0.11 4.53 12.24 0.81 8.19
China 0.85 8.21 0.41 3.98 13.07 17.24 0.05 0.10 4.28 12.38 1.45 8.91
Colombia 1.15 8.20 -0.16 0.26 12.88 16.34 0.07 0.14 6.46 12.21 0.74 8.35
Czechia 1.02 7.43 -0.09 1.24 10.59 15.39 0.07 0.14 5.08 12.41 - -
Egypt 0.79 8.93 0.07 2.14 13.41 18.50 0.04 0.09 5.42 11.87 - -
Hungary 0.88 9.16 -0.51 2.19 14.60 21.38 0.04 0.10 3.42 12.16 - -
India 1.12 8.28 -0.02 2.04 13.22 17.38 0.06 0.13 3.98 12.20 0.72 8.87
Israel 0.52 6.53 -0.18 1.32 11.96 14.77 0.04 0.08 2.94 11.94 - -
Korea 0.95 8.50 0.20 0.92 13.94 16.61 0.06 0.11 2.68 12.07 0.94 8.04
Malaysia 0.75 5.78 0.63 4.58 9.01 11.37 0.07 0.13 2.48 12.65 - -
Mexico 0.80 6.67 -0.50 1.58 10.62 14.55 0.05 0.12 4.57 12.36 0.63 8.06
Peru 1.19 7.64 -0.28 2.14 11.51 15.72 0.08 0.16 4.68 12.19 - -
Philippines 0.57 6.95 -0.02 0.97 11.08 14.56 0.04 0.08 4.19 11.23 - -
Poland 0.74 9.11 -0.10 0.79 13.16 18.98 0.04 0.08 3.96 12.23 - -
Russia 1.91 10.59 0.55 3.44 15.09 20.26 0.09 0.18 6.10 11.37 1.05 8.61
South Africa 0.91 7.14 -0.31 0.10 10.62 14.36 0.06 0.13 3.49 12.23 - -
Thailand 1.07 8.47 -0.01 2.92 11.46 18.95 0.06 0.13 2.67 12.12 - -
Turkey 1.18 13.51 0.53 3.12 17.10 27.07 0.04 0.09 3.82 12.83 - -

Mean 0.97 8.31 0.00 1.91 12.45 17.29 0.06 0.12 4.18 12.17 0.93 8.77
StdDev 0.32 1.83 0.33 1.23 2.07 3.64 0.01 0.03 1.11 0.38 0.27 1.01
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Table A.3: Country data sources for the risk-free rates

This table reports the risk-free source for all countries in our sample. Data are from Datastream
except for eurozone and USA, which are from Refinitiv and Kenneth French’s website.

Country Description

Australia One-month Australian Dollar deposit rate
Brazil Brazil interbank deposit certificates rate
Canada One-month Canada Treasury Bill rate
Chile 90-days Chile Discountable Promissory Notes rate
China One-month China Repo rate
Colombia 90-days Colombia certificate of deposit rate
Czechia 90-days Czech inter-bank delayed rate
Denmark One-month Denmark inter-bank delayed rate
Egypt One-month Egypt inter-bank rate
Euro area One-month Euribor rate
Hong Kong One-month Hong Kong inter-bank rate
Hungary One-month Hungary inter-bank rate
India Overnight India deposit rate
Israel One-month Tel Aviv inter-bank rate
Japan 30-days Japan domestic banks deposit rate
Korea One-month South Korea inter-bank rate
Malaysia One-month Malaysia inter-bank rate
Mexico 28-days Mexico Cetes closing rate
New Zealand One-month New Zealand Dollar deposit rate
Norway One-month Norway inter-bank delayed rate
Peru Peru inter-bank rate
Philippine 30-60 days Philippine time deposit rate
Poland One-month Polish Zloty deposit rate
Russia 30-days Russia inter-bank actual credit rate
South Africa One-month South African JIBAR rate
Sweden 30-days Sweden Treasury Bill rate
Switzerland One-month Swiss Franc deposit rate
Thailand One-month Thailand inter-bank (Bangkok Bank) rate
Turkey One-month Turkey deposit rate
UK One-month UK Treasury Bill Tender rate
USA One-month USA Treasury Bill rate
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Table A.4: Descriptive statistics of our subsamples of household portfolios

This table reports descriptive statistics of the number of portfolios of different sizes (number
of stock holdings) in the original database (N) and the two sub-samples constructed to obtain
data- (Nd) and analyst-based (Na) ambiguity estimates for January 1996, 1995, and 1994.

Portfolio N Nd Na N Nd Na N Nd Na

size

(a) January 1996 (b) January 1995 (c) January 1994

1 6254 4328 1951 7567 5494 2482 9680 7377 3253
2 3997 3376 1631 4900 4254 2104 6133 5423 2710
3 2759 2411 1194 3330 3027 1590 4416 4091 2054
4 2099 1840 925 2573 2352 1213 3112 2893 1444
5 1509 1315 657 1779 1624 820 2350 2132 1078
6-9 3404 2816 1338 3966 3430 1625 4692 4141 1976
10+ 3074 1973 701 3133 2140 838 3677 2482 961
All 23096 18059 8397 27248 22321 10672 34060 28539 13476
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Table A.5: Descriptive statistics of household portfolios

This table reports descriptive statistics of the diversification, ambiguity, and returns of our samples of household portfolios. Panels A and B present
the statistics for the data- and analyst-based samples. We report statistics of the diversification (Div1 and Div2 ), the estimated portfolio ambiguity
(δ), the expected portfolio return (Mean), standard deviation (StdDev), and Skewness (Skew). Statistics are reported for January 1996, 1995, and
1994 and are computed using monthly returns over the preceding ten years. The data- and analyst-based sample for three dates include 18,059,
22,321, 28,539, and 8,397, 10,672, and 13,476 households, respectively.

January 1996 January 1995 January 1994

Div1 Div2 δ Mean StdDev Skew Div1 Div2 δ Mean StdDev Skew Div1 Div2 δ Mean StdDev Skew

(a) Data-based

Mean 0.37 0.17 4.95 0.018 0.088 0.090 0.37 0.16 5.05 0.016 0.088 0.112 0.37 0.17 5.09 0.016 0.089 0.074
StdDev 0.32 0.18 1.73 0.010 0.049 0.686 0.32 0.18 1.70 0.010 0.051 0.746 0.32 0.18 1.83 0.010 0.050 0.764
Min 0.00 0.00 1.51 -0.042 0.025 -2.040 0.00 0.00 1.74 -0.064 0.026 -2.900 0.00 0.00 1.58 -0.064 0.025 -1.910
25th 0.00 0.00 3.68 0.012 0.057 -0.301 0.00 0.00 3.78 0.011 0.057 -0.293 0.00 0.00 3.78 0.012 0.057 -0.359
Median 0.42 0.12 4.75 0.016 0.074 -0.041 0.43 0.12 4.81 0.015 0.073 -0.035 0.43 0.12 4.88 0.016 0.074 -0.067
75th 0.66 0.31 6.09 0.022 0.106 0.329 0.66 0.30 6.21 0.020 0.105 0.322 0.66 0.30 6.28 0.020 0.106 0.296
Max 0.96 0.79 9.99 0.104 0.946 9.910 0.96 0.76 9.96 0.180 1.830 9.760 0.96 0.73 10.60 0.136 0.860 8.940

(b) Analyst-based

Mean 0.24 0.09 3.93 0.013 0.076 -0.082 0.24 0.09 3.99 0.012 0.076 -0.073 0.24 0.09 4.12 0.013 0.075 -0.134
StdDev 0.29 0.13 1.94 0.006 0.031 0.473 0.29 0.13 2.02 0.006 0.031 0.481 0.29 0.13 2.05 0.006 0.030 0.437
Min 0.00 0.00 1.97 -0.015 0.029 -2.360 0.00 0.00 1.90 -0.015 0.032 -1.970 0.00 0.00 2.01 -0.019 0.030 -2.030
25th 0.00 0.00 2.51 0.009 0.051 -0.326 0.00 0.00 2.42 0.008 0.052 -0.353 0.00 0.00 2.53 0.010 0.053 -0.410
Median 0.00 0.00 3.22 0.013 0.071 -0.135 0.00 0.00 3.35 0.012 0.071 -0.126 0.00 0.00 3.59 0.014 0.069 -0.198
75th 0.49 0.16 4.82 0.016 0.090 0.171 0.50 0.16 4.92 0.015 0.089 0.152 0.49 0.16 5.08 0.016 0.086 0.107
Max 0.93 0.64 11.40 0.058 0.218 4.120 0.92 0.63 11.80 0.057 0.229 3.700 0.91 0.59 12.00 0.035 0.198 2.070
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B Supplementary Figures and Tables

Figure B.1: Equity home bias of broad market categories over time

This figure displays the equity home bias index (eqn. 14) against the market capitalization
weights over time for the sample of developed, emerging, and world markets. The data are ag-
gregated for each point in time by taking the average value across countries in the corresponding
market category. The sample covers 21 developed and 19 emerging markets using annual data
from the IMF CPIS database.
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Figure B.2: Optimal home allocation and ambiguity for additional countries

This figure illustrates the home bias index (HBI) of the worst-case model optimal allocations with respect to the market capitalization as a function
of foreign ambiguity δf for different relative ambiguity of home to foreign (m). The horizontal line indicates the observed time-average home bias
estimated using the actual home allocation weights. The results are for investors in developed markets, and the model selects portfolios from the
sample of 21 developed and 19 emerging markets. The sample period spans January 1999–December 2019. We do not display Greece, for which
the model only explains the equity home bias with the EPU-based ambiguity estimates. With the data-based estimates, the crossover happens at
a high δ > 15 if the relative ambiguity is set to m = 0.30, and we need to decrease the relative ambiguity to 0.15 to obtain a crossover within the
data-based ambiguity estimate of δ = 10.4.

(a) Austria (b) Belgium (c) Canada (d) Denmark (e) Finland

(f) France (g) Hong Kong (h) Italy (i) Netherlands (j) New Zealand

(k) Potugal (l) Spain (m) Sweden (n) Switzerland (o) UK
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C Background results and proofs

C.1 Background

We provide some general background material on CVaR and necessary definitions.

Definition C.1 (Conditional Value-at-Risk). The conditional Value-at-Risk at confidence

level α ∈ (0, 1), for the random variable portfolio return r̃p is

CVaRα(r̃p) = −E[r̃p | r̃p ≤ ζ], (C.1)

where E is the expectation operator and ζ ∈ R is the Value-at-Risk, i.e., the (1 − α)-

quantile of r̃p given by the highest γ such that r̃p will not exceed γ with probability 1− α,

VaRα(r̃p)
.
= ζ = max{γ ∈ R | Prob(r̃p ≤ γ) ≤ 1− α}. (C.2)

Theorem C.1 (Fundamental minimization formula (Rockafellar and Uryasev, 2002)).

As a function of γ ∈ R, the auxiliary function

Fα(r̃p, γ) = γ +
1

1− α
E
[

max{−r̃p − γ, 0}
]

is finite and convex, with

CVaRα(r̃p) = min
γ∈R

Fα(r̃p, γ).

For convenience, we drop the parameter α from our use of CVaR, which we set at 0.95

in all numerical tests. We note that Rockafellar and Uryasev (2002) develop their model

for a random loss variable z̃ and not for returns. Their CVaR of losses is the expected

value above a threshold ζ. In contrast, we take the CVaR of return as the negative of the

expected value of returns below the 1 − α probability threshold ζ. We use their results

with z̃ = −r̃p to develop our model in returns.

Definition C.2 (Stochastic dominance (Ogryczak and Ruszczyński, 2002)). Random

variable X̃ dominates random variable Ỹ under first order stochastic dominance (FSD,

X̃ �FSD Ỹ ) if E(U(X̃)) ≥ E(U(Ỹ )) for all non-decreasing utility functions U . Similarly,

X̃ dominates random variable Ỹ under second order stochastic dominance (SSD, X̃ �SSD
Ỹ ) if E(U(X̃)) ≥ E(U(Ỹ )) for all non-decreasing concave utility functions U .

Definition C.3 (Risk measure consistency (Ogryczak and Ruszczyński, 2002)). Given

a stochastic order �SSD we say that a risk measure ρ is SSD consistent if X̃ �SSD Ỹ

implies ρ(X̃) ≤ ρ(Ỹ ).
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Definition C.4 (Worst case risk measure (Zhu and Fukushima, 2009)). Assume the

random variable X̃ with π indicating its probability distribution and the corresponding risk

measure ρ(X̃) are given. Further the probability measure π is ambiguous and characterized

with an ambiguity set P, then we define the worst case risk measure as follows:

ρw(X̃) = sup
π∈P

ρ(X̃).

C.2 Proof of Theorem 2.1

First, we establish a proposition on the SSD consistency of worst-case risk measures

needed for our proof.

Proposition C.1 (SSD consistency of worst-case risk measures). If the risk measure as-

sociated with probability distribution π is SSD consistent, then the worst-case risk measure

ρw associated with distribution ambiguity set P remains SSD consistent.

Proof

Assume random variables X̃ and Ỹ are arbitrary given and X̃ dominates Ỹ , or equiva-

lently, X̃ �SSD Ỹ . That is, X̃ is preferred to Ỹ within all risk-averse preference models

with a non-decreasing and concave utility function. Since the risk measure ρ is SSD

consistent then ρ(X̃) ≤ ρ(Ỹ ), and therefore ρw(X̃) = max
π∈P

ρ(X̃) ≤ max
π∈P

ρ(Ỹ ) = ρw(Ỹ ).

That completes the proof of the proposition.

Now we prove the Theorem. Let us assume the portfolios w1 and w0 belong to X+,

and w1 dominates w0 i.e., the portfolios’ returns satisfy r̃w1 �SSD r̃w0 with r̃w = r̃>w,

for any arbitrary probability distribution of r̃ in D with mean returns, r̄h and r̄f , in Uh

and Uf , respectively. This implies r̄>w1 ≥ r̄>w0 > 0 (Whang, 2019, Theorem 1.1.5), or,

equivalently, r̄>w1 − rf ≥ r̄>w0 − rf > 0. Therefore, the worst-case mean excess returns

of portfolios w1 and w0 satisfy the following inequality.

min
r̄h∈Uh
r̄f∈Uf

min
π∈D

E(r̃w1 − rf ) = min
r̄h∈Uh
r̄f∈Uf

r̄>w1 − rf ≥

min
r̄h∈Uh
r̄f∈Uf

r̄>w0 − rf = min
r̄h∈Uh
r̄f∈Uf

min
π∈D

E(r̃w0 − rf ).

CVaR is SSD consistent (Ogryczak and Ruszczyński, 2002, Theorem 3.2). Proposition

C.1 implies that worst-case CVaR of excess return is SSD consistent, or,

max
r̄h∈Uh
r̄f∈Uf

max
π∈D

CVaR(r̃w1 − rf ) ≤ max
r̄h∈Uh
r̄f∈Uf

max
π∈D

CVaR(r̃w0 − rf ).

Note that under given assumptions, both worst-case CVaR of excess return and mean
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excess return of portfolios w1 and w0 are positive. Therefore, the above inequalities, taken

together, imply that the ratio of worst-case CVaR to worst-case mean excess return for

portfolio w1 is less than or equal to the ratio of worst-case CVaR to worst-case mean excess

return of portfolio w0. That means the worst-case CVaR-to-mean ratio of portfolio w1

is less than or equal to the worst-case CVaR-to-mean ratio of w0. Hence, the inverse of

the worst-case MtC ratio is SSD consistent. Since worst-case MtC is positive, one can

easily see that ρ(X̃) ≤ ρ(Ỹ ) is equivalent to 1
ρ(Ỹ )
≤ 1

ρ(X̃)
in Definition of risk measure

consistency (see Definition C.3). Therefore, the worst-case MtC is SSD consistent.

C.3 Proof of Theorem 2.3

The second-order cone program with two assets is obtained from Theorem 2.2:

max
w′h,w

′
f∈R+

((r̂h − rf )− δhσ̂h)w′h + ((r̂f − rf )− δf σ̂f )w′f (C.3)

s.t. −((r̂h − rf )− δhσ̂h)w′h − ((r̂f − rf )− δf σ̂f )w′f

+

√
α

1− α

√
w′2hσ̂

2
h + 2w′hw

′
f σ̂hσ̂fρ+ w′2f σ̂

2
f ≤ 1

w′h + w′f > 0.

Since optimization model (C.3) is convex and satisfies the Slater regularity condition, the

KKT optimality conditions are the necessary and sufficient condition for optimality. Let

us define σ̂2
p = w′?2h σ̂

2
h +w′?2f σ̂

2
f + 2w′?hw

′?
hρσ̂hσ̂f where w′?h and w′?f represents the optimal

solutions. The KKT optimality conditions are as follows:

(−r̂f + rf + δf σ̂f ) + φ

(
(−r̂f + rf + δf σ̂f ) +

√
α

σ̂p
√

1− α
(σ̂2

fw
′?
f + ρσ̂hσ̂fw

′?
h)

)
= 0

(−r̂h + rf + δhσ̂h) + φ

(
(−r̂h + rf + δhσ̂h) +

√
α

σ̂p
√

1− α
(σ̂2

hw
′?
h + ρσ̂hσ̂fw

′?
f )

)
= 0

φ

(
1 + (r̂f − rf − δf σ̂f )w′?f + (r̂h − rf − δhσ̂h)w′?h −

√
α

1− α
σ̂p

)
= 0

(C.4)

where φ ≥ 0 is the Lagrange multiplier.

By obtaining φ from the first two KKT conditions and equating them together, we get

(r̂f − rf − δf σ̂f )(σ̂2
hw
′?
h + ρσ̂hσ̂fw

′?
f )− (r̂h − rf − δhσ̂h)(σ̂2

fw
′?
f + ρσ̂hσ̂fw

′?
h) = 0.

Dividing above by σ̂hσ̂f , and using s to denote the Sharpe ratio we get

(sf − δf )σ̂hw′?h + (sf − δf )ρσ̂fw′?f − (sh − δh)σ̂fw′?f − (sh − δh)ρσ̂hw′?h = 0,
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or,

((sf − δf )− ρ(sh − δh))σ̂hw′?h − ((sh − δh)− ρ(sf − δf ))σ̂fw′?f = 0. (C.5)

If both aa-premia are positive, and for ρ > 0, one of the following cases is possible:

i) ρ(sf − δf ) < (sh − δh) < 1
ρ
(sf − δf ).

Then eqn. (C.5) implies both w′?h and w′?f are positive. Dividing it by w′?h + w′?f > 0,

((sf − δf )− ρ(sh − δh))σ̂hw?h − ((sh − δh)− ρ(sf − δf ))σ̂fw?f = 0,

where w?h and w?f are the optimal solution of model (6). As w?f = 1− w?h, we have

w?h =
((sh − δh)− ρ(sf − δf ))σ̂f

((sf − δf )− ρ(sh − δh))σ̂h + ((sh − δh)− ρ(sf − δf ))σ̂f
.

ii) (sh − δh) ≤ ρ(sf − δf ) or (sh − δh) ≥ 1
ρ
(sf − δf ).

Then eqn. (C.5) implies the model (C.3) has a solution with one of w′?h and w′?f being

positive. By deriving two candidate solutions from the first constrain of the model (C.3)

and comparing the corresponding objective values, one can see that if (sh− δh) ≤ ρ(sf −
δf ), then w′?f > 0 and w′?h = 0 and if (sh − δh) ≥ 1

ρ
(sf − δf ), then w′?h > 0 and w′?f = 0.

This implies model (6) has a solution of w?h = 0 if (sh − δh) ≤ ρ(sf − δf ) and w?h = 1 if

(sh − δh) ≥ 1
ρ
(sf − δf ).

If only one asset has a positive aa-premium, then case (ii) applies, and therefore the

model (6) has a trivial solution of w?h = 0 if sf − δf > 0 and w?h = 1 if sh − δh > 0.

C.4 Proof of Corollary 2.1

From Theorem 2.3, the optimal allocation is determined by the following two cases:

i) ρ(sf − δf ) < (sh − δh) < 1
ρ
(sf − δf ).

The w?h is specified by eqn. (9). Taking derivatives from w?h with respect to δh we have

∂w?h
∂δh

=
1

d2

(
−σ̂fd− (ρσ̂hσ̂f − σ̂2

f )((sh − δh)− ρ(sf − δf ))
)

(C.6)

where d is the denominator of w?h. By replacing d and canceling similar terms, we have

∂w?h
∂δh

=
ρ2σ̂f σ̂h(sf − δf )− σ̂f σ̂h(sf − δf )

[((sf − δf )− ρ(sh − δh))σ̂h + ((sh − δh)− ρ(sf − δf ))σ̂f ]2
,

or
∂w?h
∂δh

=
σ̂hσ̂f (1− ρ2)(δf − sf )

[((sf − δf )− ρ(sh − δh))σ̂h + ((sh − δh)− ρ(sf − δf ))σ̂f ]2
.
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This is eqn. (10). By taking partial derivatives from w?h with respect to δf and following

similar steps, one can obtain eqn. (11).

ii) (sh − δh) ≤ ρ(sf − δf ) or (sh − δh) ≥ 1
ρ
(sf − δf ).

Derivative of w?h with respect to δh and δf is zero as w?h is constant (Theorem 2.3, case

ii).

C.5 Ambiguity effects on diversifcation

We give the ambiguity effect on the diversification measure Div1.

Corollary C.1. For ρ > 0, the partial derivatives of Div1 with respect to δh and δf at

the optimal allocation of the model (6) are:

i. If ρ(sf − δf ) < (sh − δh) < 1
ρ
(sf − δf )

∂Div1

∂δh
= 2σ̂hσ̂f (1− ρ2)(δf − sf )F (C.7)

∂Div1

∂δf
= 2σ̂hσ̂f (1− ρ2)(sh − δh)F, (C.8)

with

F =
((sf − δf )− ρ(sh − δh)) σ̂h − ((sh − δh)− ρ(sf − δf )) σ̂f

[((sf − δf )− ρ(sh − δh)) σ̂h + ((sh − δh)− ρ(sf − δf )) σ̂f ]3
. (C.9)

ii. Zero, if (sh − δh) ≤ ρ(sf − δf ) or (sh − δh) ≥ 1
ρ
(sf − δf ).

Proof

Given the definition of Div1, derivative of Div1 with respect to δh is as follows:

∂Div1

∂δh
= (1− 2w?h)

∂w?h
∂δh

. (C.10)

Replacing the w?h from Theorem 2.3 and
∂w?

h

∂δh
from Corollary 2.1, we get the result. Similar

procedure can be followed to obtain ∂Div1
∂δf

.

For ρ ≤ 0 case (i) of Corollary C.1 applies. The sign of the partial derivative of Div1

with respect to δf is positive for F > 0 and negative for F < 0. When the means and

standard deviations are the same, then ∂Div1
∂δf

< 0 for δf > δh, so that increasing ambi-

guity induces under-diversification, everything else being equal. For equal ambiguities,

the partial derivative is zero, and we achieve maximum diversification. There is a nice
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symmetry around the maximum, illustrated in Figure C.1 that displays the model’s di-

versification between two assets assumed to have identical expected returns (0.6%) and

standard deviation (4.3%) with a correlation of 0.3. With increasing ambiguity, the allo-

cation shifts towards one of the assets (diversification 0) depending on which market is

more ambiguous. For equal ambiguities, the allocation is perfectly diversified (diversifi-

cation 0.5). This surface twists with heterogeneous ambiguity sets among multiple assets

and with asset returns correlation.

Figure C.1: Diversification among two correlated assets with heterogenous ambiguity

This figure illustrates the diversification of optimal asset allocation using the worst-case model
(6) for two assets with identical excess monthly return means (0.6%) and standard deviations
(4.3%), scaled ambiguity parameters δh and δf in the range 0 to 1, and correlation ρ = 0.3.

D Second-order cone program formulations

D.1 Worst-case ambiguity aversion

Consider the MtC model (2). We assume that the CVaR of portfolio excess return

is positive for any portfolio in X. This is a reasonable assumption, given that CVaR

denotes losses and for α large enough any portfolio will have positive losses at the tail.

Defining ξ = CVaR(r̃p − rf ) > 0, we write the MtC model as:

max
w∈X, ξ∈R

1

ξ
(E(r̃)− rfe)>w (D.1)

s.t. CVaRα((r̃ − rfe)>w) ≤ ξ

ξ > 0.
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Set w′ = w
ξ
. By positivity of ξ and positive homogeneity of CVaR, we write the above as:

max
w′∈Rn

+

(E(r̃)− rfe)>w′ (D.2)

s.t. CVaR((r̃ − rfe)>w′) ≤ 1

e>w′ > 0,

where e>w′ = 1
ξ
, and thus w = 1

e>w′w
′. Introducing the heterogeneous ambiguity sets,

and letting w′ = (w′h, w
′
f ) be the concatenation of home and foreign allocations w′h ∈ R+

and w′f ∈ Rn−1
+ , we write the worst-case model as follows:

max
w′∈Rn

+

min
r̄h∈Uh
r̄f∈Uf

min
π∈D

(E(r̃)− rfe)>w′ (D.3)

s.t. max
r̄h∈Uh
r̄f∈Uf

max
π∈D

CVaR((r̃ − rfe)>w′) ≤ 1

e>w′ > 0.

Replacing CVaR from the fundamental minimization formula (Appendix C.1) we have:

max
w′∈Rn

+

min
r̄h∈Uh
r̄f∈Uf

min
π∈D

(E(r̃)− rfe)>w′ (D.4)

s.t. max
r̄h∈Uh
r̄f∈Uf

max
π∈D

min
γ∈R

Fα((r̃ − rfe)>w′, γ) ≤ 1,

e>w′ > 0.

Obviously, min
π∈D

(E(r̃) − rfe)>w′ = (r̄ − rfe)>w′. Also, the max-min optimization in the

first constraint can be obtained from Proposition 1 in Lotfi and Zenios (2018). Therefore,

the above formulation can be written as follows:

max
w′∈Rn

+

min
r̄h∈Uh
r̄f∈Uf

(r̄ − rfe)>w′ (D.5)

s.t. max
r̄h∈Uh
r̄f∈Uf

− (r̄ − rfe)>w′ +
√
α√

1− α

√
w′>Σ̂w′ ≤ 1

e>w′ > 0.
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In terms of home and foreign allocations we have:

max
(w′h,w

′
f )∈Rn

+

(
min
r̄h∈Uh

(r̄h − rf )w′h
)

+

(
min
r̄f∈Uf

(r̄f − rfe)>w′f
)

(D.6)

s.t. −
(

min
r̄h∈Uh

(r̄h − rf )w′h
)
−
(

min
r̄f∈Uf

(r̄f − rfe)>w′f
)

+

√
α√

1− α

√
w′2hσ̂

2
h + 2w′hσ̂

>
hfw

′
f + w′>f Σ̂fw′f ≤ 1

w′h + e>w′f > 0.

One can check that min
r̄f∈Uf

(r̄f − rfe)
>w′f is equal to (r̂f − rfe)

>w′f − δf

√
w′>f Σ̂fw′f , and

substituting above leads to the following formulation:

max
(w′h,w

′
f )∈Rn

+

(
min
r̄h∈Uh

(r̄h − rf )w′h
)

+ (r̂f − rfe)>w′f − δf
√
w′>f Σ̂fw′f (D.7)

s.t. −
(

min
r̄h∈Uh

(r̄h − rf )w′h
)
− (r̂f − rfe)>w′f + δf

√
w′>f Σ̂fw′f +

√
α√

1− α

√
w′2hσ̂

2
h + 2w′hσ̂

>
hfw

′
f + w′>f Σ̂fw′f ≤ 1

w′h + e>w′f > 0,

Likewise, min
r̄h∈Uh

(r̄h − rf )w′h = (r̂h − rf )w′h − δhw′hσ̂h, and substituting above we get (7).

This completes the proof.

D.2 Continuous ambiguity aversion

Given the MtC formulation (D.2), we use the result of Kamdem (2005) on CVaR formu-

lation of a multivariate t-distribution to write the MtC model as:

max
w′∈Rn

+

(r̄ − rfe)>w′ (D.8)

s.t. −(r̄ − rfe)>w′ + esν,α

√
w′>Σ̂w′ ≤ 1

e>w′ > 0.

Therefore, the continuous ambiguity aversion model is as follows:

max
w′∈Rn

+

λ
(

min
r̄h∈Uh
r̄f∈Uf

(r̄ − rfe)>w′
)

+ (1− λ)
(

max
r̄h∈Uh
r̄f∈Uf

(r̄ − rfe)>w′
)

(D.9)

s.t. λ
(

max
r̄h∈Uh
r̄f∈Uf

− (r̄ − rfe)>w′
)

+ (1− λ)
(

min
r̄h∈Uh
r̄f∈Uf

− (r̄ − rfe)>w′
)

+ esν,α

√
w′>Σ̂w′ ≤ 1

e>w′ > 0.
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In terms of home and foreign allocations we re-write (D.9) as:

max
(w′h,w

′
f )∈Rn

+

λ

(
min
r̄h∈Uh

(r̄h − rf )w′h + min
r̄f∈Uf

(r̄f − rfe)>w′f
)

+

(1− λ)

(
max
r̄h∈Uh

(r̄h − rf )w′h + max
r̄f∈Uf

(r̄f − rfe)>w′f
)

s.t. −λ
(

min
r̄h∈Uh

(r̄h − rf )w′h + min
r̄f∈Uf

(r̄f − rfe)>w′f
)
−

(1− λ)

(
max
r̄h∈Uh

(r̄h − rf )w′h + max
r̄f∈Uf

(r̄f − rfe)>w′f
)

+

esν,α

√
w′2hσ̂

2
h + 2w′hσ̂

>
hfw

′
f + w′>f Σ̂fw′f ≤ 1

w′h + e>w′f > 0.

One can check that min
r̄f∈Uf

(r̄f − rfe)
>w′f is equal to (r̂f − rfe)

>w′f − δf

√
w′>f Σ̂fw′f and

max
r̄f∈Uf

(r̄f − rfe)>w′f is equal to (r̂f − rfe)>w′f + δf

√
w′>f Σ̂fw′f . Substituting above leads to

the following formulation:

max
(w′h,w

′
f )∈Rn

+

λ

(
min
r̄h∈Uh

(r̄h − rf )w′h + (r̂f − rfe)>w′f − δf
√
w′>f Σ̂fw′f

)
+

(1− λ)

(
max
r̄h∈Uh

(r̄h − rf )w′h + (r̂f − rfe)>w′f + δf

√
w′>f Σ̂fw′f

)
s.t. −λ

(
min
r̄h∈Uh

(r̄h − rf )w′h + (r̂f − rfe)>w′f − δf
√
w′>f Σ̂fw′f

)
−

(1− λ)

(
max
r̄h∈Uh

(r̄h − rf )w′h − (r̂f − rfe)>w′f + δf

√
w′>f Σ̂fw′f

)
+

esν,α

√
w′2hσ̂

2
h + 2w′hσ̂

>
hfw

′
f + w′>f Σ̂fw′f ≤ 1

w′h + e>w′f > 0,

Furthermore, one can easily check that min
r̄h∈Uh

(r̄h − rf )w
′
h = (r̂h − rf )w

′
h − δhw

′
hσ̂h and
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max
r̄h∈Uh

(r̄h − rf )w′h = (r̂h − rf )w′h + δhw
′
hσ̂h. Replacing these two above, we get:

max
(w′h,w

′
f )∈Rn

+

λ

(
(r̂h − rf )w′h − δhw′hσ̂h + (r̂f − rfe)>w′f − δf

√
w′>f Σ̂fw′f

)
+

(1− λ)

(
(r̂h − rf )w′h + δhw

′
hσ̂h + (r̂f − rfe)>w′f + δf

√
w′>f Σ̂fw′f

)
s.t. −λ

(
(r̂h − rf )w′h − δhw′hσ̂h + (r̂f − rfe)>w′f − δf

√
w′>f Σ̂fw′f

)
−

(1− λ)

(
(r̂h − rf )w′h + δhw

′
hσ̂h + (r̂f − rfe)>w′f + δf

√
w′>f Σ̂fw′f

)
+

esν,α

√
w′2hσ̂

2
h + 2w′hσ̂

>
hfw

′
f + w′>f Σ̂fw′f ≤ 1

w′h + e>w′f > 0.

Gathering similar terms together, we obtain (13). This completes the proof.

D.3 Worst-case ambiguity aversion with interval ambiguity

We first define the interval ambiguity set of the mean returns and then present the

second-order cone program of worst-case ambiguity aversion model.

Definition D.1 (Interval ambiguity). Mean returns belong to the interval set:

UI = {r̄ ∈ Rn | r̄− ≤ r̄ ≤ r̄+},

where r̄− and r̄+ are given vectors, and the inequalities are component-wise.

The worst-case MtC maximization is as follows:

max
w∈X

min
r̄∈UI

min
π∈D

E(r̃p − rf )
CVaR(r̃p − rf )

. (D.10)

The following theorem provides the second-order cone program formulation.

Theorem D.3 (Second-order cone program worst-case model with interval ambiguity).

Model (D.10) is cast as:

max
v′−,v

′
+∈Rn

+

(r̄− − rfe)>v′− − (r̄+ − rfe)>v′+ (D.11)

s.t. (r̄+ − rfe)>v′+ − (r̄− − rfe)>v′− +
α

1− α

√
(v′− − v′+)>Σ̂(v′− − v′+) ≤ 1

v′− − v′+ ≥ 0

e>(v′− − v′+) > 0.

From the optimal solutions v
′∗
+ and v

′∗
− , we obtain the solution to (D.10) as w∗ = 1

e>v′∗v
′∗
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where v′∗ = v
′∗
− − v

′∗
+ .

Proof

Given the MtC formulation (D.2), the worst-case MtC model is as follows:

max
w′∈Rn

+

min
r̄∈UI

min
π∈D

(E(r̃)− rfe)>w′ (D.12)

s.t. max
r̄∈UI

max
π∈D

CVaR((r̃ − rfe)>w′) ≤ 1

e>w′ > 0.

Replacing CVaR from the fundamental minimization formula (Appendix C.1) we have:

max
w′∈Rn

+

min
r̄∈UI

min
π∈D

(E(r̃)− rfe)>w′ (D.13)

s.t. max
r̄∈UI

max
π∈D

min
γ∈R

F ((r̃ − rfe)>w′, γ) ≤ 1

e>w′ > 0.

Obviously, min
π∈D

(E(r̃)− rfe)>w′ = (r̄− rfe)>w′. Further, the max-min optimization in the

first constraint can be obtained from Proposition 1 in Lotfi and Zenios (2018). Therefore,

the above formulation can be written as follows:

max
w′∈Rn

+

min
r̄∈UI

(r̄ − rfe)>w′ (D.14)

s.t. −
(

min
r̄∈UI

(r̄ − rfe)>w′
)

+

√
α√

1− α
√
w′>Σw′ ≤ 1

e>w′ > 0.

One can check min
r̄∈UI

(r̄−rfe)>w′ = max
v′−,v

′
+∈Rn

+

(r̄−−rfe)>v′−−(r̄+−rfe)>v′+ with w′ = v′−−v′+.

This leads us to the following formulation.

max
v′−,v

′
+∈Rn

+

(r̄− − rfe)>v′− − (r̄+ − rfe)>v′+ (D.15)

s.t. (r̄+ − rfe)>v′+ − (r̄− − rfe)>v′− +
α

1− α

√
(v′− − v′+)>Σ̂(v′− − v′+) ≤ 1

v′− − v′+ ≥ 0

e>(v′− − v′+) > 0.

This completes the proof.
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